首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
在矩阵论中,我们知道:对任-n阶方阵X,Frobenius证明了,有一个最小多项式存在,它由特徵多项式Det(Ix-X)除以特徵矩阵F(x)=Ix-X的n-1阶子式的最大公因式得出;每一个以X为根的多项式都被这个最小多项式所除尽。  相似文献   

2.
§1.H.B.Phillips曾推廣了Hamilton-Cayley的定理如下: 設F(x_1,…,x_r)=A_1x_1+…+A_rx_r,其中A_i為n階方陣,x_i為不定量,f(x_1,…,x_r)=det F(x_1,…,x_r)。如果M_1,…,M_r為兩兩可交換的n階方陣使F(M_1,…,M_r)=0,則M_1,…,M_r滿足多項式f(x_1,…,x_r)即f(M_1,…,M_r)=0。 A.Ostrowski又將Phillips的結果推廣:以φ(x_1,…,x_r)表示F(x_1…,x_r)的所有n-1階子式的最大公因式,且命f(x_1,…,x_r)/φ(x_1,…,x_r)=f_1(x_1,…,x_r),則M_1,…,  相似文献   

3.
设1≥x_(1n)>x_(2n)>…>x_(nn)≥-1。我们考虑如下的三角矩阵: 设f(x)是定义在区间[-1,1]上的连续函数,那末存在次数不超过n-1次的多项式P_(n-1)(x)使P_(n-1)(x_(vn))=f(x_(vn)),我们记这样的P_(n-1)(x)为L_n(f,A),乃是f(x)关于A的n次拉葛朗日内插多项式。写  相似文献   

4.
用Leray-Schauder不动点定理,讨论完全n阶边值问题:{-u~((n))(t)=f(t,u(t),u′(t),…,u~((n-1))(t)), t∈[0,1],u~((i))(0)=0, i=0,1,2,…,n-2,u~((n-1))(1)=0烅烄烆解的存在性,其中f:[0,1]×R~n→R为连续函数.在一个允许f(t,x_0,x_1,…,x_(n-1))关于x_i(i=0,1,2,…,n-1)超线性增长的不等式条件及f(t,x_0,x_1,…,x_(n-1))关于x_(n-1)满足Nagumo型增长的条件下,得到了该问题解的存在性.  相似文献   

5.
本文研究以Jacobi多项式的J_n(x)=sin(2n+1)/2θ/sinθ/2(x=cosθ,0≤θ≤π)的零点为基点的Hermite-Fejer插值过程H_(2n-1)(f,x).对于Lipα(0<α<1)类中函数,改进了[1]的结果:得到了H_(2n-1)(f,x)逼近有界变差函数的阶估计. 设函数f(x)∈C〔-1,1〕,x=cosθ(0≤θ≤π),J_n(x)是n阶Jacobi多项式,x_k=x_k~(n)=cosθk=cos(2kπ)/(2n+1)(k=1,2,…,n)是J_n(x)的零点,以{x_1,x_2,…,x_n}为基点的Hermite-Fejer插值算子是(见文〔1〕(4))  相似文献   

6.
我们已经知道,给定一个函数f(x)和m 1个互不相同的点X_0,x_1,…x_m,则f(x)在点x_0,x_1,…x_m的m阶差分比可表成如下形式:  相似文献   

7.
对于二元一阶常系数线性微分方程组:x′=Ax+f(t),引入特征根方程|A-λE|=0的特征行向量K=(k_1,k_2)(其中K满足:K(A-λE)=0)概念,将二元一阶常系数线性微分方程组,化为二元一次代数线性方程形式:(K_2x_2)′=λ(K_2x_2)+(K_2f),(K_1x_1)′=λ(K_1x_1)+K_1x_2+K_1f,从中给出原微分方程组的解.  相似文献   

8.
本文研究了一类含积分边值条件的非线性分数阶微分方程耦合系统{~cD~αu(t)+f(t,u(t),v(t))=0,~cD~αv(t)+f(t,u(βt),v(βt))=0,u(0)=u′(0)=…=u~(n-2)(0)=u~(n)(0)=0,u(1)=λ∫01u(s)ds,v(0)=v′(0)=…=v~(n-2)(0)=v~(n)(0)=0,v(1)=λ∫01v(s)ds正解的唯一性.利用广义耦合不动点定理,本文得到了该边值问题正解的唯一性的充分条件,并在举例说明了定理的有效性.  相似文献   

9.
为求解方程f(x)=0,我们提出了下列二种迭代程序:x_n~(1)=ω(x_(n-1)~((m-1)),x_(n-1)~(m),x_(n-1)~(m)),x_n~(2)=ω(x_(n-1)~((m-1)),x_(n-1)~(m),x_m~(1)),x_n~(3)=ω(x_(n-1)~((m-1)),x_(n-1)~(m),x_n~(2),x_n~(m)=ω(x_(n-1)~((m-1)),x_(n-1)~(m),x_n~((m-1))),(?)n∈N_0和z_(n 1)=ω(x_n,y_n,x_n),y_(n 1)=ω(x_n,z_(n 1),z_(n 1)),x_(n 1)=ω(x_n,z_(n 1),y_(n 1)),其中ω(x,y,z)=z-f(z)/f(x,y),f(x,y)=f(x)-f(y)/(x-y),它们的收敛阶分别为m (m~2 4)~(1/2)/2和2 3~(1/2)。本文分别建立了程序(I_m)和程序(Ⅱ)的收敛性定理,并就两个定理作了六点注记。文中还给出了一个数值例子  相似文献   

10.
λ一矩阵Q(λ)可以表示为λ的矩阵多项式的形式 Q(λ)=Q_nλ~n+Q_(n-1)λ~(n-1)+…+Q_1λ+Q_o这里的诸Q_t是同级的数字矩阵。两个λ的矩阵多项式的加法、乘法和一个λ的多项式、一个λ的矩阵多项式的乘法,由λ一矩阵对应的矩阵运算确定,由此导出:  相似文献   

11.
设F是任意一个域,f(x)=x~n-a_1x~(n-1) a_2x~(n-2)… (-1)~na_n是域F上的一个不可约多项式,a是f(x)在域F的一个扩张(例如f(x)在F上的分裂域)K中的一个根。对于域F上的两个m阶矩阵A,B,A αB是域K上的m阶矩阵。本文讨论矩阵A αB的可逆性,从而得到这样一个有趣的事实:我们可以给出域F上的一个矩阵,使得其可逆性等价于矩阵A αB的可逆性,并且A αB的逆矩阵也可以由该矩阵的逆来得到。在这里,我们所给出的矩阵是下面的mn阶(分块)矩阵:  相似文献   

12.
主要证明了定理:设F是单位圆盘△上的亚纯函数族,F中的任一函数f的极点是重级的,零点重级至少为m 1,m是正整数,h(z)≠0,a0,a1,…,am-1都是D上的全纯函数.如果对任一f∈F,L(f)(z)=f(m)(z) am-1(z)f(m-1)(z) … a1(z)f′(z) a0(z)f(z)≠h(z),z∈D,则F在D上正规.  相似文献   

13.
1 概念与引理设M_n(F)代表数域F上的全体n阶方阵的集合。引理1 任意 A∈M_k(F),则A必定满足一个r阶常系数线性齐次差分方程。 f(n)=a_1f(n-1)+a_2f(n-2)+……+a_(r-1)f(n-r+1)+a_rf(n-r)(1)其中 1≤r≤k,f(i)=A~i,且A的n次方幂的通项公式为:  相似文献   

14.
研究了亚纯函数涉及微分多项式的正规族,证明了:设F为单位圆盘△上的一族亚纯函数,k,n,g为正整数,P(w)=wq+aq-1(z)wq-1+…+a1(z)w是多项式.并且设H(f,f',…,f(k))是不含常数项的微分多项式,a,b为任意的2个非零复数,若对任一f∈ F,f的零点重数≥k+1,极点重数≥2,并且p(f(k))+H(f,f',…,f(k))=a→f(z)=b,则F在单位圆盘△上正规.  相似文献   

15.
以g(a_1,a_2,…,a_n)表n元整系数线性型a_1x_1+…+a_nx_n,a_i>0,(a_1,…,a_n)=1,不可非负整表出之最大整数,D_(n-1)=(a_1,…,a_(n-1)).注记中将证明g(a_1,…,a_n)=D_(n-1)·g(a_1/D_(n-1),…,a_(n-1)/D_(n-1),a_n)+(D_(n-1)-1)a_n。并由此对Brayer关于g(a_1,…,a_n)之上确界的著名结果和Roberts关于g(a,a+d,…,a+sd)的精确结果分别给出一个十分简洁的新证明.  相似文献   

16.
<正> 一般的《高等代数》书都是采用若干步的线性替换化为标准形的.(当然可通过合同的初等变换求出上式中的n阶可逆矩阵C来)先将f(x_1x_2,…,x_n)化为d_1y_1~2+g(y_2,…,yn)(g(y_2y_3,…yn)是P上的n-1元二次型)再对g(y_2,…,yn)进行变换等等.而当a_(11)=a_(22)=…=a_(nn)=0时,往往需要两步线性替换才能将n元的情形化为n-1元的情形.本文介绍一种简单易记的方法.只需经过一次线性替换就可将f(x_1,x_2…,x_n)化为d_1y_1~2+d_2y_2~2+g(y_3,…,yn)的形式,即有  相似文献   

17.
本文证明 Cayley-Hamilton 定理的一个推广:设 R 是含单位元的交换环,M_n(R)[λ]是 R 的矩阵环 M_n(R)上的多项式环,如果 F(λ)∈M_n(R)(λ),F(A)=0,(?)(λ)=detF(λ),则(?)(A)=0.  相似文献   

18.
设 k 为某一自然数,数列{x}、{y}当n>k 时满足y_n=C_0x_n+C_1x_(n-1)+…+C(?),则称{y_n}为{x_n}的相关数列.设 g_1(t),g_2(t),…,g(t)在 u(t_0)内严格单调且连续,g(t_0)=x_0,i=1,2,…,k.g_i(t)的反函数为 g~(-1)(x),它在 u(x_0)内严格单调且连续,g~(-1)(x_0)=t_0,i=1,2,…,k设F(t)=C_1f〔g_1(t)〕+C_2f〔g_2(t)〕+…+Cf〔g(t)〕,且存在 l,1≤l≤k,使|C_1|>(?)|C_i|.  相似文献   

19.
利用Leray-Schauder度理论和Wirtinger-type不等式,给出了非线性n阶常微分方程u(n)=f(t,u,u′,…,u(n-1))-e(t),0相似文献   

20.
本文利用矩阵纯函数的多项式表示来给出矩阵纯函数的复合函数运算性质的一个初等证法.即证明:设A为复合域上的n阶方阵,(?)(λ),ψ(λ)=f[(?)(λ)]为复数数值函数,纯函数(?)(A),ψ(A),是确定的,那么命B=(?)(A),则f(B)也是确定的,并且ψ(A)=f[B]=f[(?)(A)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号