首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
《矿物冶金与材料学报》2021,28(12):2001-2007
Graphene oxide (GO) wrapped Fe3O4 nanoparticles (NPs) were prepared by coating the Fe3O4 NPs with a SiO2 layer, and then modifying by amino groups, which interact with the GO nanosheets to form covalent bonding. The SiO2 coating layer plays a key role in integrating the magnetic nanoparticles with the GO nanosheets. The effect of the amount of SiO2 on the morphology, structure, adsorption, and regenerability of the composites was studied in detail. An appropriate SiO2 layer can effectively induce the GO nanosheets to completely wrap the Fe3O4 NPs, forming a core-shell Fe3O4@SiO2@GO composite where Fe3O4@SiO2 NPs are firmly encapsulated by GO nanosheets. The optimized Fe3O4@SiO2@GO sample exhibits a high saturated adsorption capacity of 253 mg·g?1 Pb(II) cations from wastewater, and the adsorption process is well fitted by Langmuir adsorption model. Notably, the composite displays excellent regeneration, maintaining a ~90% adsorption capacity for five cycles, while other samples decrease their adsorption capacity rapidly. This work provides a theoretical guidance to improve the regeneration of the GO-based adsorbents.  相似文献   

2.
《矿物冶金与材料学报》2021,28(12):1908-1916
The effect of CaCO3, Na2CO3, and CaF2 on the reduction roasting and magnetic separation of high-phosphorus iron ore containing phosphorus in the form of Fe3PO7 and apatite was investigated. The results revealed that Na2CO3 had the most significant effect on iron recovery and dephosphorization, followed by CaCO3, the effect of CaF2 was negligible. The mechanisms of CaCO3, Na2CO3, and CaF2 were investigated using X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectrometry (SEM–EDS). Without additives, Fe3PO7 was reduced to elemental phosphorus and formed an iron–phosphorus alloy with metallic iron. The addition of CaCO3 reacted with Fe3PO7 to generate an enormous amount of Ca3(PO4)2 and promoted the reduction of iron oxides. However, the growth of iron particles was inhibited. With the addition of Na2CO3, the phosphorus in Fe3PO7 migrated to nepheline and Na2CO3 improved the reduction of iron oxides and growth of iron particles. Therefore, the recovery of iron and the separation of iron and phosphorus were the best. In contrast, CaF2 reacted with Fe3PO7 to form fine Ca3(PO4)2 particles scattered around the iron particles, making the separation of iron and phosphorus difficult.  相似文献   

3.
4.
Carbonated decomposition of hydrogarnet is one of the vital reactions of the calcification–carbonation method, which is designed to dispose of low-grade bauxite and Bayer red mud and is a novel eco-friendly method. In this study, the effect of the silica saturation coefficient (x) on the carbonation of hydrogarnet was investigated from the kinetic perspective. The results indicated that the carbonation of hydrogarnets with different x values (x = 0.27, 0.36, 0.70, and 0.73) underwent two stages with significantly different rates, and the kinetic mechanisms of the two stages can be described by the kinetic functions R3 and D3. The apparent activation energies at Stages 1 and 2 were 41.96–81.64 and 14.80–34.84 kJ/mol, respectively. Moreover, the corresponding limiting steps of the two stages were interfacial chemical reaction and diffusion.  相似文献   

5.
《矿物冶金与材料学报》2020,27(10):1347-1352
A new method of high-gravity combustion synthesis (HGCS) followed by post-treatment (PT) is reported for preparing high-performance high-entropy alloys (HEAs), Cr0.9FeNi2.5V0.2Al0.5 alloy, whereby cheap thermite powder is used as the raw material. In this process, the HEA melt and the ceramic melt are rapidly formed by a strong exothermic combustion synthesis reaction and completely separated under a high-gravity field. Then, the master alloy is obtained after cooling. Subsequently, the master alloy is sequentially subjected to conventional vacuum arc melting (VAM), homogenization treatment, cold rolling, and annealing treatment to realize a tensile strength, yield strength, and elongation of 1250 MPa, 1075 MPa, and 2.9%, respectively. The present method is increasingly attractive due to its low cost of raw materials and the intermediate product obtained without high-temperature heating. Based on the calculation of phase separation kinetics in the high-temperature melt, it is expected that the final alloys with high performance can be prepared directly across master alloys with higher high-gravity coefficients.  相似文献   

6.
Computational simulations and high-temperature measurements of velocities near the surface of a mold were carried out by using the rod deflection method to study the effects of various operating parameters on the flow field in slab continuous casting (CC) molds with narrow widths for the production of automobile exposed panels. Reasonable agreement between the calculated results and measured subsurface velocities of liquid steel was obtained under different operating parameters of the CC process. The simulation results reveal that the flow field in the horizontal plane located 50 mm from the meniscus can be used as the characteristic flow field to optimize the flow field of molten steel in the mold. Increases in casting speed can increase the subsurface velocity of molten steel and shift the position of the vortex core downward in the downward circulation zone. The flow field of liquid steel in a 1040 mm-wide slab CC mold can be improved by an Ar gas flow rate of 7 L·min?1 and casting speed of 1.7 m·min?1. Under the present experimental conditions, the double-roll flow pattern is generally stable at a submerged entry nozzle immersion depth of 170 mm.  相似文献   

7.
Electroslag remelting (ESR) gives a combination of liquid metal refining and solidification structure control. One of the typical aspects of liquid metal refining during ESR for the advanced steel and alloy production is desulfurization. It involves two patterns, i.e., slag–metal reaction and gas–slag reaction (gasifying desulfurization). In this paper, the advances in desulfurization practices of ESR are reviewed. The effects of processing parameters, including the initial sulfur level of consumable electrode, remelting atmosphere, deoxidation schemes of ESR, slag composition, melting rate, and electrical parameters on the desulfurization in ESR are assessed. The interrelation between desulfurization and sulfide inclusion evolution during ESR is discussed, and advancements in the production of sulfur-bearing steel at a high-sulfur level during ESR are described. The remaining challenges for future work are also proposed.  相似文献   

8.
We report the picosecond laser ablation of aluminum targets immersed in a polar organic liquid (chloroform, CHCl3) with ~2 ps laser pulses at an input energy of ~350 μJ. The synthesized aluminum nanoparticles exhibited a surface plasmon resonance peak at ~340 nm. Scanning electron microscopy images of Al nanoparticles demonstrated the spherical morphology with an average size of (27 ± 3.6) nm. The formation of smaller spherical Al nanoparticles and the diminished growth could be from the formation of electric double layers on the Al nanoparticles. In addition to spherical aluminum nanoparticles, triangular/pentagonal/hexagonal nanoparticles were also observed in the colloidal solution. Field emission scanning electron microscopy images of ablated Al targets demonstrated laser induced periodic surface structures (LIPSSs), which were the high spatial frequency LIPSSs (HSF-LIPSSs) since their grating period was ~280 nm. Additionally, coarse structures with a period of ~700 nm were observed.  相似文献   

9.
The mineral transition and formation mechanism of calcium aluminate compounds in CaO?Al2O3?Na2O system during the high-temperature sintering process were systematically investigated using DSC?TG, XRD, SEM?EDS, FTIR, and Raman spectra, and the crystal structure of Na4Ca3(AlO2)10 was also simulated by Material Studio software. The results indicated that the minerals formed during the sintering process included Na4Ca3(AlO2)10, CaO·Al2O3, and 12CaO·7Al2O3, and the content of Na4Ca3(AlO2)10 could reach 92wt% when sintered at 1200°C for 30 min. The main formation stage of Na4Ca3(AlO2)10 occurred at temperatures from 970 to 1100°C, and the content could reach 82wt% when the reaction temperature increased to 1100°C. The crystal system of Na4Ca3(AlO2)10 was tetragonal, and the cells preferred to grow along crystal planes (110) and (210). The formation of Na4Ca3(AlO2)10 was an exothermic reaction that followed a secondary reaction model, and its activation energy was 223.97 kJ/mol.  相似文献   

10.
Ore particles, especially fine interlayers, commonly segregate in heap stacking, leading to undesirable flow paths and changeable flow velocity fields of packed beds. Computed tomography (CT), COMSOL Multiphysics, and MATLAB were utilized to quantify pore structures and visualize flow behavior inside packed beds with segregated fine interlayers. The formation of fine interlayers was accompanied with the segregation of particles in packed beds. Fine particles reached the upper position of the packed beds during stacking. CT revealed that the average porosity of fine interlayers (24.21%) was significantly lower than that of the heap packed by coarse ores (37.42%), which directly affected the formation of flow paths. Specifically, the potential flow paths in the internal regions of fine interlayers were undeveloped. Fluid flowed and bypassed the fine interlayers and along the sides of the packed beds. Flow velocity also indicated that the flow paths easily gathered in the pore throat where flow velocity (1.8 × 10?5 m/s) suddenly increased. Fluid stagnant regions with a flow velocity lower than 0.2 × 10?5 m/s appeared in flow paths with a large diameter.  相似文献   

11.
饱和含水土壤埋地原油管道冬季停输温降   总被引:4,自引:0,他引:4  
建立了饱和含水土壤埋地原油管道在低于冰点环境温度下的停输流动和传热模型,该模型不仅考虑土壤水分结冰和管内原油凝固相变过程与初始温度场和流场的影响,而且考虑了水分在土壤多孔介质中和管内原油的自然对流。通过数值模拟,获得了停输期间温度场、流场以及土壤水分结冰界面和管道中原油凝固界面的分布情况。结果表明,停输期间越靠近管壁正上方的土壤,其温度梯度越大;受温度分布的影响,土壤水分和管内原油产生沿y轴对称线自下而上的自然对流;土壤水分结冰界面和管道中原油凝固界面随停输时间向埋深方向推进,管道顶部土壤中的结冰界面推进速度较远离管道土壤中的结冰界面缓慢,管内原油凝固界面也向埋深方向偏移。  相似文献   

12.
我国南北烟区烤烟产量和营养特性研究   总被引:2,自引:0,他引:2  
试验连续3年在我国南北烟区7省10县,选择代表性植烟土壤,采用规范化栽培技术,研究了烤烟生长、氮、磷、钾、钙、镁、硫、氯的营养特性.结果表明,烟株生长和养分吸收速率前期缓慢,中期最快,后期降低.北方烟株后期的生长、氮、磷、钾吸收速率显著高于南方.养分吸收速率的变异系数氮≈钾磷,中微量元素表现出多样性.在烟株各器官中,营养元素的分配比例叶茎≥根.叶片养分含量南北差异最大,根系次之,茎南北相似,说明前者易受环境条件的影响,但后者比较稳定,对外界环境不敏感.从总体上看,养分吸收速率、分配比例及叶片含量因养分种类和南北地域不同而异,估计与土壤气候等生态环境有关,这可能是我国烤烟质量风各异的原因之一.值得注意的是,北方烤烟含氯量高而稳定,含氮量北方高于南方,可能导致北方烟叶蛋白质和烟碱含量增加.  相似文献   

13.
通过对白俄罗斯别列金自然保护区与中国东北长白山地区典型泥炭沼泽的考察研究,从泥炭沼泽形成环境和泥炭层特征方面,详细地分析了道莫日里契科,萨弗斯克-莫赫和金川,哈尼四处泥炭沼泽的地形形态,植被类型以及泥炭剖面结构,泥炭类型等的异同性,提出泥炭沼泽形成实质是自然界中物质能量转化过程中的必然产物,也是生物循环与地质循环过程中生物化学作用的结果。  相似文献   

14.
和谐--最高的审美理想   总被引:5,自引:0,他引:5  
和谐是中国人最高的审美理想,其表现是:认为美存在于和谐之中,美的本质是和谐;追求人与自然的和谐,把“天人合一”作为最高的审美境界;追求和谐的社会关系,要求人与社会的关系和谐,要使家庭和谐,要使人与人之间的关系和谐;追求和谐的艺术,认为艺术的本质是和谐,艺术的作用是对人的心理与社会进行调节,使人的心理与社会关系和谐,文艺作品追求和谐的美。  相似文献   

15.
从云南滇池附近的三块水稻田和三口鱼塘中分离到的捕食线虫真菌种类比较相似,但从鱼塘中分离到的捕食线虫真菌种类要比水稻田中的少,两个生境中的优势种也不同.水稻田中,春季和秋季的优势种为Arbrostrys conoides,夏季和冬季的优势种为A.oligospora,秋季的捕食线虫真菌种类最多,春季次之,夏季和冬季最少;鱼塘中,春季、夏季和冬季的优势种均为Dactylellina ellipsosporum,秋季的优势种为A.ver-micola.夏季的捕食线虫真菌种类最多,其他三个季节的捕食线虫真菌种类相差不大.从湖南湘江衡阳段的300份泥土样品中,共分离、鉴定出17种水生捕食线虫真菌,东洲岛和新大桥水域分离的水生捕食线虫真菌比李坳水域分离的种数少.  相似文献   

16.
为了解北海海域潮下带底栖贝类的分布特征,给底栖贝类的保护、开发和利用提供参考,本研究采用潜水员水肺潜水、海底样方定量采集方法,对北海市廉州湾、侨港、白龙和营盘等4个海区潮下带底栖贝类的种类、数量及时空分布特征进行调查。结果表明,北海海域4个海区潮下带底栖贝类有2纲9目31科60属102种,其中腹足纲(Gastropoda)13科14属17种,双壳纲(Bivalvia)18科46属85种。春季有55种底栖贝类,秋季有76种,春季和秋季共有的种类有29种。秋季的廉州湾海区底栖贝类种类数和个体数都是最少的,秋季的侨港海区出现的底栖贝类种类数最多,个体数最多的出现在春季的营盘海区。平均栖息密度最高的是春季的营盘海区,达到27.35个/m2,平均栖息密度最低的是春季的廉州湾海区,只有1.00个/m2。春、秋两季4个海区的优势种差异较大。多项生物多样性指数结果表明,春季的营盘海区底栖贝类生物多样性差,底栖贝类群落结构处于重度受干扰状态;秋季的4个海区底栖贝类生物多样性较丰富,秋季的底栖贝类群落结构总体处于比较健康的状态。  相似文献   

17.
硼、钼、硅对草坪草海滨雀稗CAT和POD活性的影响   总被引:2,自引:0,他引:2  
以暖季型草坪草海滨雀稗(Paspalum vaginatum Swarfz)为实验材料,通过硼、钼、硅及其配合施用,测定冬季和春季过氧化氢酶(CAT)和过氧化物酶(POD)的活性,探讨硼、钼、硅对草坪草抗寒性的作用.在冬季低温时草坪草海滨雀稗CAT活性下降.施钼和硼钼配施显著提高了草坪草海滨雀稗CAT活性.春季施钼和施硅草坪草海滨雀稗活性显著高于其它处理.在冬季低温时草坪草海滨雀稗POD活性显著升高.在春季和冬季施硅均显著提高草坪草海滨雀稗POD活性.且冬季和春季没有差异.研究结果表明:Mo和Si促进了细胞保护酶活性提高,能有效提高对生物体活性氧的清除能力.减少活性氧对生物膜的破坏作用,从而提高草坪草抗寒性.  相似文献   

18.
不同pH对糙海参消化酶活性的影响   总被引:8,自引:0,他引:8  
研究了不同pH条件下糙海参前肠、中肠及后肠的蛋白酶和淀粉酶比活力的变化.结果表明:1)糙海参前肠和中肠在pH=3,后肠在pH=10时,其蛋白酶的比活力最高;糙海参前肠和中肠蛋白酶的最适pH值在酸性范围,后肠蛋白酶的最适pH值在碱性范围;2)糙海参前肠淀粉酶在pH=3,中肠和后肠淀粉酶在pH=7时,其比活力最高,前肠淀粉酶的最适pH值在酸性范围,中后肠淀粉酶的最适pH值在中性或偏碱性范围;3)糙海参的整个肠道均能消化蛋白质与淀粉,中后肠是淀粉消化的主要场所;4)淀粉酶的比活力高于蛋白酶的比活力,这与其摄食底栖藻与腐屑的食性相吻合.  相似文献   

19.
归一化数字表面模型是表征地物高度、辅助遥感影像分类的重要特征,但是其片状、精度不稳定的特性制约了分类精度的提升.针对这个问题,该文提出了一种考虑局部归一化高度的双分支输入语义分割网络,一方面设计了一种双分支输入结构,分别提取地物的光谱特征和几何特征,并通过跳跃连接进行特征融合以充分学习地物多模态信息;另一方面提出了一种新的地物高度表征方法,结合深度神经网络受GPU显存限制只能处理较小区域影像的特点,在输入的数字表面模型局部区域内计算高度特征.最后通过在ISPRS标准数据集上对三种网络框架进行对比试验,证明了相较于仅使用光谱影像,该文方法总体精度提升了4.5%~4.7%,比使用归一化表面模型作为高度特征的分类方法具有更高的分类精度、计算效率和自动化程度.  相似文献   

20.
重质油中链烷烃与环烷烃的分离分析是烃类分析的难点,本文将超声波技术与尿素、硫脲包合法相结合,对大庆减压馏分油进行了链烷烃和环烷烃的分离试验,并用GC/MS和NMR对分离后的组分进行了研究.当活化剂异丙醇与油样品的质量比为7.5、包合反应温度为38~43℃时,5次重复试验测得链烷烃和环烷烃的平均质量分数分别为46.56%和41.88%,相对标准偏差分别为0.7%和0.51%.链烷烃中正构烷烃的碳数分布为C20—C38,其中环烷烃的含量低于NMR的检测限,环烷烃的总离子流色谱图显示出其中的链烷烃含量很低.研究结果表明超声波对尿素、硫脲包合反应有明显的促进作用,能显著地提高重质油中链烷烃和环烷烃的分离效果,该方法测定重质油中链烷烃和环烷烃的含量准确度高、重复性好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号