首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
微分方程零解稳定性的充要条件   总被引:1,自引:0,他引:1  
本文讨论扰动矢量方程其中:x=(x_1,x_2……,x_n)为n维矢量,f(t,x)=(f_1(t,x),f_2(t,x),……。f_n(t,x))是定义在区域 t_0≤t< ∞,‖x‖≤H,(0~2)上的n维连续矢量函数,不失一般性,假定f(t,0)≡0,它们满足解的唯一性及对初始值的连续依赖性条件,并且假定解可以开拓到t= ∝。约定 x=x(t;x~0,t_0) 表示方程(0~1)满足初始条件x(t_0)=x~0的解。  相似文献   

2.
Definition 1. If y=G(x,t)is a continuous function on both x and t (aG(x,t)>x≮a, (for t>0), 3) G(x_1,t)>G(x_2,t), (for x_1>x_2), 4) G(G(x, t_1),t_2)=G(x,t_1+t_2),then we say that G(x,t) is a regular iterative family on (a,b) with parameter t. Definition 2. Suppose G(x, t) is a regular iterative family on (a, b) and  相似文献   

3.
在常微分方程的高阶方程求解过程中,为判断一解能否为其通解,常需讨论一组解函数的线性相关性.函数组的线性相关性是这样定义的:定义:设函数x_1(t),x_2(t),…x_n(t)是定义在区间〔a,b〕上,如果存在不全为零的常数λ_1,λ_2,…λ_n,使得(?)t∈〔a,b〕有:λ_1x_1(t) λ_2x_2(t) … λ_nx_n(t)=0则称x_1(t),x_2(t),…x_(t)在区间〔a,b〕上线性相关;否则,就称它们在〔a,b〕上线性无关.  相似文献   

4.
本文应用上下解方法研究了如下分数阶常微分方程多点边值问题{x~((δ))(t)=f(t,x(t)),t∈[a,b],a0,x(a)+m∑k=1a_kx(t_k)=c解的存在性,其中f:[a,b]×R→R是L~1-Carathéodory函数,δ∈(0,1],c∈R,t_k(k=1,2,…,m)为满足at_1t_2…t_mb,a_k0以及1+m∑k=1a_k0的常数.  相似文献   

5.
在变分学最简单问题中,极端曲线共轭点有两种不同的定义,一种是从几何概念出发,另一种则是从分析概念出发。这两个定义并不完全等价,一般说来,几何定义要求更强一些,而分析定义则弱一些,但在一定的条件下,二者仍然是等价的。引理一:设有二阶微分方程 (1)x=f(t,x,x,) 其中的f对于一切(t,x)及|x-a_0|≤a为C_1类函数。则在t_0的某个邻域内及对于|α-α_0|≤b,该方程存在合初始条件x|_(t-t_0)=x_0的解族x=x(t,α),其中参数α的意义是  相似文献   

6.
一类混合样条[1]的插值问题Ⅱ对二次和三次混合样条同样成立,今以三次混合样条为例论证如下。§1 定义及其一般表达式定义;设△:a=x_0相似文献   

7.
本文将证明牛顿—莱布尼兹公式对于 schwarz 导数亦成立。设函数 f(x)定义在[a,b]上,若对于 x∈(a、b)(?)(f(x+h)-f(x-h))/(2h)存在,则该极限值为 f(x)在点 x 的 schwarz 导数。记作 f~s(x)引理1 设 f(x)是[a,b]上的连续函数,f~s(x)在(a、b)上存在,若 f(b)>(<)f(a),则存在点,c∈(a,b),使得:f~s(c)≥0(≤0)引理2 设 f(x)在[a,b]上连续,f~s(x)在(a,b)上存在,f(a)=f(b)=0,则存在点 x_1,a相似文献   

8.
通过实践的摸索,并根据文[1]的提示,我们应用数论的方法,在选点方法、试验次数、初始试验点不事先知道的情况下证明黄金分割法的最优性。§1 基本概念和定义定义1 若函数y(x)在区间[a,b]上只有一个最大值点x,在点x左侧函数严格增加,在最大值点的右侧,函数严格减少,则称函数y(x)在区间[a,b]上为单峰的。不失一般性,今后只研究具有最大值的单峰函数。单峰函数有如下性质:y=y(x)是[a,b]上的单峰函数,x_1和x_2(x_1相似文献   

9.
定义对于函数f(x),若在其定义域的某个区间M上任意取两个数x_1,x_2,它们对应的函数值分別为f(x_1),f(x_2), (1)如果当x_1f(x_2),则称函数f(x)在区间M上是严格递減的; (4)如果当x_1相似文献   

10.
利用上下解方法,考虑一类分数阶非线性微分方程初值问题{x~a(t)=f(t,x(t)),t∈[a,b],a0,x(a)=x_0的可解性,基于Schauder不动点定理,得到了如果存在一对上下解,则在上下解之间必存在一个解其中:f:[a,b]×R→R是一个连续函数;x~(a)(t)表示x在t上的一致α阶导数,α∈[0,1].  相似文献   

11.
设L[a,b]表示有限区间[a,b]上可积函数的全体,{f_n(x)}为定义在[a,b]上的一个函数列。若对任意的g(x)∈L[a,b],只要integral from n=a to b f_n(x)g(x)=0,n=1,2,3,……就有g(x)在[a,b]上几乎处处为零,则称{f_n(x)}在[a,b]上是完全的。著名的Müntz—Sz'asz定理指出:幂函数列{x~(n_p)}在[a,b]上完全的充分必要条件是sum from p=1 to ∞ 1/n_p=+∞。其中a≥0,0相似文献   

12.
为方便起见.我们延用[8]中的记号,以V~3[a,b]记抽象三级强有界变差函数的全体,以V~(*3)[a,b]记抽象三级有界变差函数的全体,以V~(**3)[a,b]记抽象三级弱有界变差函数的全体. 假设x(t)是定义于[a,b]上而取值于Banach空间E的抽象函数,y(t)是定义在[a,b]上的实函数,对[a,b]任作一分划△:a=t_0相似文献   

13.
引言本文引入了函数f(x)在[a,b]上R_φ积分概念,研究R_φ积分的性质以及R_φ积分与Riemann积分的关系,并得出函数f(x)在[a,b]上Riemann积分的几个等价定义。在本文中,[a,b]是实数轴上的有界闭区间;f(x)是定义在[a,b]上的实值函数;I是实常数,[a,b]上的分法T是有限点集T={x_0,x_1,…,x_n:a=x_0相似文献   

14.
常微分方程组x′+Ax=f(t),x(t)=x_n的特解公式,一般都是用常数变易法导出。本文采用矩阵函数方法,用n×n函数阵B(t)左乘方程组,使方程组变为可积分形式 [exp(At)x]′=exp(At)f(t)然后从t_0到t积分,即得特解公式 x=exp[A(t_0-t)]x_0+integral from n=t_0 to t exp[A(s-t)]f(s)ds  相似文献   

15.
本文给出文献[1]中定理8.15及8.25的逆定理,并证明其中的条件是最佳的.为方便计,我们将所得的逆定理与原有结果适当修正综合起来以充要条件的形式叙述.引理1 设T是左连续t-范数,且L是满足交换律、结合律的算子,并满足若u_1a+b,由于L(a,b)≤Sum(a,b)≤a+b相似文献   

16.
以往研究有理逼近问题都是考虑如下的有理分式 Q(x)=S(x)(q_0x~n q_1x~(n-1) … q_n)/(p_0x~m p_1x~(m-1) …p_m其中p_0,p_1,…p_m;;q_0,q_1,…,q_n为实参数,且都假定S(x)在所考虑区间[a,b]上恒不为零。1979年王仁宏在[1]中所究具有约束的有理逼近问题时也假定S(x)在[a,b]上恒不为零。本文把S(x)在[a,b]上恒不为零的条件放宽为S(x)在[a,b]上至多有有限个零点的条件下,仍可得到相应的误差下界估计、最佳逼近存在定理以及чебыщев型的最佳逼近定理。  相似文献   

17.
§1.E.F.Beckenbach(1937)曾引进广义凸性函数的概念,其定义如下.设{F(x)}是一族在(a,b)上连续的函数,它具有性质:对于任何x_1,x_2,a相似文献   

18.
4 Weierstrass定理的推广—Stone定理这一节所介绍的Stone定理是Weierstrass定理的推广。由此可以得到其他的逼近定理。我们先从一系列的引理开始。引理5 设x_1,x_2∈[a,b],x_1≠x_2,(?)[a,b]上(?)函数(x):且Φ(x)在[a,b]上能被多项式一致逼近。证任取一个多项式P(x),只要作P(x_1)≠P(x_2),这是可以办到的,例如职P(x)=x。  相似文献   

19.
定义用叠代法求介方程f(x)=0称为“快速弦位叠代法”. 定理设函数f(x)在[a,b]上单调连续,并在[a,b]的两端点有相反符号,设f(x)满足i)一价差商f(x_n,x_(n-1))=λn,|λn|≥a>0, ii)二阶差商则叠代(1)收敛于方程f(x)=0的介. 设其中l=BKγ<2.  相似文献   

20.
§1.引言本文用李雅普诺夫泛函的方法建立下面两类Lurie型的中立型泛函微分方程的绝对稳定性的充分性判据. 一类是直接控制系统这里C是[-h,0]→R~n的连续函数全体的集合,其中的模定义为,x_t∈C,即x_1(θ)=x(t θ)(-h≤θ≤0).D(·):[t_0, ∞)×C→R~n.记I≡[t_0, ∞),  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号