首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
文(1)提供了求二阶复常系数线性齐次微分方程通解的公式,文(2)介绍了用算子法求复常系数非齐次方程特解的方法。这篇短文利用待定系数法,得到了二阶复常系数线性非齐次微分方程特解的简捷求法,即直接利用公式可写出相应方程的特解。  相似文献   

2.
常数非齐次线性常微分方程的迭代解法   总被引:3,自引:0,他引:3  
给出一个解常系数非齐次线性常微分方程的方法-迭代法。用此方法解相关的常微分方程,容易掌握,又不易出错。  相似文献   

3.
利用微分算子法和欧拉公式,推导出一类二阶常系数非齐次线性微分方程特解的计算公式,进而得出求此类微分方程特解的简便方法.  相似文献   

4.
在通常的常微分方程教材中,(如文献[1]),只简单地介绍了求高阶常系数非齐次线性微分方程和Euler方程特解的比较系数,未作深入地讨论。本文也探讨这两类方程特解的求法,较系统地综述了有关文献的结论,改进和完善了比较系数法,简化了求解过程。  相似文献   

5.
利用方程组系数矩阵的特征根,给出二元常系数非齐次线性微分方程组特解的一种求法。  相似文献   

6.
目的给出非齐次项为拟多项式的常系数非齐次线性微分方程一个特解公式。方法以微分算子为工具,经过巧妙的逻辑推理,通过比较系数给出了特解中多项式的系数计算公式。结果给出了求一类常系数非齐次线性微分方程的特解的递推公式。结论算子方法对常系数线性微分方程的求解可以更进一步得到拓广。  相似文献   

7.
归纳介绍了求n阶常系数非齐次线性微分方程特解的几种方法,通过具体例子分析比较各种方法的优缺点,并小结各种方法的适用条件,供教学中参考.  相似文献   

8.
本文通过变量代换,将常系数非齐次线性微分方程降阶和简化非齐次项,使之比较容易地求得该类方程的特解、该方法推广了一般的特定系数法,并给出了上机计算方法。  相似文献   

9.
给出了常系数线性非齐次方程组dy/dt=Ay+e^atPm(t),有形如y=e^at(m+x)∑(i=0)cit^i的特解的一个严格证明。  相似文献   

10.
根据函数的求导运算与不定积分互为逆运算的思想,利用逆矩阵方法讨论了求解某些常系数非齐次线性微分方程的特解,得到了求解该类问题的一般公式,并给出了证明和算例.  相似文献   

11.
本文给出了一个二阶常系数线性非齐次微分方程的特解公式。此公式法与待定系数法相比,适用于一般情形且更简捷。  相似文献   

12.
针对自由项f(x)为几类常见类型的二阶常系数非齐次线性微分方程,得到了求此类微分方程的特解公式,使求特解更加简易,且适合计算机计算.  相似文献   

13.
给出一类n阶常系数线性微分方程的特解计算公式.  相似文献   

14.
通过严谨的数学推导,利用待定系数法,对于一阶常系数非奇次线性微分方程y′+py=Q(x),给出了Q(x)的不同情况的特解的具体表达式,以及带有不同表达形式的特解的通解公式.  相似文献   

15.
一类二阶常系数微分方程的特解   总被引:4,自引:2,他引:4  
利用比较系数法,推导出二阶常系数微分方程y″ py′ qy=(a0 a1x)sinλx的特解的一般公式,相信在求此类微分方程的特解中有着重要的作用.  相似文献   

16.
求二阶线性常系数非齐次微分方程通解的一种新方法   总被引:1,自引:0,他引:1  
为了更多地得到理论上和应用上占有重要地位的二阶常系数线性非齐次微分方程的通解,这里使用常数变易法,在先求得二阶常系数线性齐次微分方程一个特解的情况下,将二阶常系数线性非齐次微分方程转化为可降阶的微分方程,从而给出了一种运算量较小的二阶常系数线性非齐次微分方程通解的一般公式,并且将通解公式进行了推广,实例证明该方法是可行的.  相似文献   

17.
在已有文献所给的解一元四次方程方法的基础上,给出了求解四阶常系数方程的详细步骤,同时,利用常数变易法和分部积分法,以及高等代数的相关知识,得到了在两种情况下四阶常系数非齐次线性微分方程特解的两个定理.  相似文献   

18.
二阶变系数线性齐次微分方程的通解   总被引:2,自引:0,他引:2  
主要讨论了二阶变系数线性齐次微分方程的求解问题,利用变量代换的方法将二阶变系数线性齐次微分方程y″+P(x)y′+Q(x)y=0化为Riccati方程,再利用已有的结果得出二阶线性变系数齐次微分方程的通解.  相似文献   

19.
求二阶常系数线性非齐次微分方程特解通常是采用待定系数法,计算量很大。本文在不脱离教材特解的求法,利用推导特解过程中出现的重要式子Q″(x)+(2λ+p)Q’(x)+(λ2+pλ+q)Q(x)=Pm(x),简化待定系数法求特解的过程。对右端非齐次项eλx[Pl(x)cosωx+Pn(x)sinωx]是先设变换,化简右端非齐次项。  相似文献   

20.
有初等解法的微分方程是有限的,对一般的二阶变系数线性微分方程而言,没有一般的初等解法,文中讨论了系数满足一定条件下微分方程的初等解法,并举例说明它的一些简单应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号