共查询到18条相似文献,搜索用时 72 毫秒
1.
《河南科技大学学报(自然科学版)》2014,(6)
设G=(V,E)是一个图,已有文献提出了图G的符号圈控制概念,本文研究了几类积图的符号圈控制问题,主要确定了积图Pn×P2、Pn×P3和Cn×P2符号圈控制数,并给出了Pm×Pn的符号圈控制数的一个下界。 相似文献
2.
《汕头大学学报(自然科学版)》2017,(1)
设G=(V,E)是一个图,一个函数f∶E→{-1,1}如果对G中每一个无弦圈C均有f(E(C))≥1,则称f为图G的一个符号圈控制函数,图G的符号圈控制数定义为γ′sc(G)=min{e∈E(G)Σf(e)f为G的符号圈控制函数}.通过研究Mycielski图的符号圈控制数,确定了由路和圈构成的Mycielski图的符号圈控制数. 相似文献
3.
为丰富图的控制理论,引入了图的反符号圈控制的概念.通过对图的结构分析,给出了阶数为n、边数为m的简单图的反符号圈控制数的一个紧的上界.对一些特殊图类,通过给出具体的反符号圈控制函数的方法,给出了反符号圈控制数的精确值. 相似文献
4.
图与补图的符号圈控制数 总被引:5,自引:2,他引:5
设γs′c(G)表示一个图G的符号圈控制数,G表示图G的补图,该文证明了:对任意n阶图G,均有γs′c(G) γs′c(G)≥(n-1)(n-8)/2,讨论了几类直和图的符号圈控制数,并提出了若干问题和猜想. 相似文献
5.
引入了反符号路控制的概念,得到了任一图G的反符号路控制数γr′P(G)的若干上界,并确定了一些特殊图的反符号路控制数的确切值. 相似文献
6.
设图G=(V,E)。一个符号外边控制函数是这样的函数f:E→{-1,1},对任一e∈E(G),有f(O(e))=∑e′∈O(e)f(e′)≥1,这里O(e)是e的闭邻域的补。f的权ω(f)定义为G的所有边的函数值的和。G的所有符号外边控制函数中最小的权定义为G的符号外边控制数,记作γ′SOE(G)。文章建立了图的符号外边控制数的一个下界,即γ′SOE(G)≥ δ-△+1/m+1- δ-△m,确定了几类特殊图的符号外边控制数。 相似文献
7.
于崇智 《阴山学刊(自然科学版)》1999,(5):5-8
在图G=(V,E)的顶点集V上定义一个二值函数f=V→{-1,1},使对任何v∈V,f(N[v])≥1,则称f是图G的一个符号控制函数。图的符号控制函数的权重定义为f(V)=∑v∈vf(V),它的最小权重称为图的符号控制数,记为γs(G)达到最小权重的符号控制函数称为图的最小符号控制函数,本文讨论最小符号控制函数的必要条件。 相似文献
8.
设G为给定的图,且δ(G)≥1,用G ′表示图G的每个顶点v上增加d(v)-1个悬挂边所得到的图。徐保根给出了图G ′的符号边控制数。本文对上述结果做了详细证明,并给出四个例子。 相似文献
9.
10.
设G=(V,E)是一个非空图,一个函数f:E→{-1,1},如果满足∑e’∈N[e ]f(e’)≥1对于每一条边e∈E(G)均成立,则称f为图G的一个符号边控制函数。图G的符号边控制数记为r’s(G),定义为r’s(G)=min{∑e∈E(G) f(e) | f为图G的一个符号边控制函数}。本文对图的符号边控制函数进行了研究,得到了图的符号边控制数的一个新的下界;并且确定了圆梯P2×Cn的符号边控制数。 相似文献
11.
对于一个非空图G=(V,E)和一个函数f:E→{-1,+1},若SE,则记f(S)=∑e∈Sf(e).若对于G中每个非平凡的团K均满足f(E(K))≥1,则f被称为G的一个符号团控制函数,G的符号团控制数表达为 相似文献
12.
通过对图G的边集分析的方法,对图的符号星k控制数进行研究,确定了几类图的符号星k控制数 相似文献
13.
设G=(V,E)是一个没有孤立顶点的图,如果一个函数f:E→{+1,-1},对一切v∈V(G)满足∑e∈E(v)f(e)≥1成立,则称f为图G的一个符号星控制函数。图G的符号星控制数定义为γ’ss(G)=min{∑e∈E(v)f(e)∣f为G的符号星控制函数}。在图的符号星控制概念的基础上,确定了两类特殊图的符号星控制数。 相似文献
15.
16.
图的符号控制理论与局部占优有关,而一般图的符号控制数难以给出具体的计算公式,同时,在图的应用过程中,某些特殊图的使用比较常见,因此,得到这些特殊图的符号控制数是十分必要的.通过对两类特殊图的符号控制数进行研究,给出它们的符号控制数的表达式. 相似文献
17.
18.