首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
利用固体聚合物电解质 ( SPE)复合电极 ,将牛儿醇选择氧化为牛儿醛 .为了提高反应的选择性 ,可将 Mn O2 沉积于 Nafion电极上 ,Nafion电极上生成的 Mn O2 将牛儿醇氧化为牛儿醛 ,该反应电流效率较高 .  相似文献   

2.
采用溶剂法制备了聚丙烯酸(PAA)-KOH碱性聚合物电解质薄膜.循环伏安(CV)和激光拉曼光谱(Raman)结果表明,该电解质膜具有较好的电化学稳定性.交流阻抗(EIS)结果表明,随着KOH含量的增加,该薄膜的离子电导率先增大后减小.当PAA:KOH的质量比为10:21时,薄膜电导率最大,为2.7×10-2S/cm.将该薄膜应用于以AB3金为负极活性物质的镍氢二次电池中.结果表明,与以KOH水溶液为电解质的电池相比,聚合物电池具有更优的循环寿命,但倍率性能仍需改善.  相似文献   

3.
聚氨酯/全氟端基星型聚合物固体电解质   总被引:1,自引:0,他引:1  
用全氟端基星型聚合物与线形聚氨酯共混,掺入高氯酸锂制成聚合物固体电解质.并利用红外光谱、拉曼光谱、差热分析、扫描电镜、交流阻抗谱等测试方法对电解质体系的溶盐性能、热性能和导电性能进行了研究.全氟端基星型聚合物是由全氟辛酸酰氯在作为核的超支化聚缩水甘油表面接枝得到.结果表明,含有全氟端基星型聚合物的固体电解质有更好的溶盐和导电性能.  相似文献   

4.
固体氧化物电解池用作膜反应器,可以共生电能和化学产品,通过固体电解质电势分析法与动力学测量相结合可进行非均相催化反应机理研究;该膜反应器还可用于催化剂活性的电化学改性研究,本文主要从以上3个方面对固体氧化物膜反应器在非均相催化方面的应用作了归纳。  相似文献   

5.
采用Ag-β-Al_2O_3为固体电解质,以金属银为参比电极,多孔铂为工作电极,构成全固态SO_x电化学气体传感器,其响应电动势符合能斯特方程。评价研究了450~750℃温度范围内,温度、SO_x分压、气体流速与电动势响应之间的关系;在工作范围内,大量的CO_2,NO_2的存在不影响传感器对SO_x的响应。  相似文献   

6.
制备了一种结构类似于聚氨酯硬段的模型化合物,并以该模型化合物与聚氨酯和高氨酸钠盐复合,制备了一系列的聚氨酯型聚合物固体电解质,通过红外光谱和复阻抗谱分析方法对该体系的离子聚集形态、离子-聚合物相互作用进行了初步的探索,并对其离子导电性能进行了研究,结果表明,随着钠离子浓度的增加,钠离子优先与醚氧基发生络合,当其浓度达到较高水平后,转而主要与羰基发生络合;体系中盐浓度升高,自由离子和离子聚集体数目均有增加,该体系存在最佳盐程度,此时具有很高的离子导电性能,但电导率与温度关系不符合Arrhenius方程,硬段模型化合物的加入不利于体系的离子导电性能。  相似文献   

7.
溶解铸膜法制备了PVA(聚乙烯醇)-KOH碱性聚合物电解质.用循环伏安和激光拉曼光谱对其电化学稳定性进行了研究,并将其应用于锌镍二次模拟电池.结果表明,该固态电解质具有较好的稳定性,循环寿命远远高于以5 m o l/L KOH水溶液为电解质的锌镍电池.  相似文献   

8.
为了改善PVA-KOH-H2O体系碱性固体聚合物电解质(ASPE)的性能,采用溶液浇铸法向其中添加改性剂制备复合电解质膜,利用X射线衍射仪(XRD)、循环伏安法(CV)和交流阻抗法(AC)等对电解质膜的物相和性能进行了表征.研究结果表明:聚合物电解质以无定形态为主,含极少量晶相,改性剂的适量添加可以降低电解质膜的结晶度增大无定形区域,离子电导率随PEO的加入先减小后增大,随增塑剂的加入先增大后减小,三种改性剂中GROL效果最好可达4.52×10-2 S/cm,电化学稳定窗口随改性剂的添加略微变窄,但仍显示了较好的电化学稳定性,当三种物质同时共混加入时电化学性能优于单个组分.该研究结论对制备高能量碱性固体电池具有一定的参考价值.  相似文献   

9.
采用固相合成法制备了Li3PO4-LiAlO2固态锂离子电解质材料.研究了摩尔配比、煅烧温度对产物相组成、颗粒形貌、电性能的影响.结果表明:当P/Al化学计量比为1∶1时,煅烧后试样中存在片状的γ-LiAlO2和球状的γ-Li3PO4两相,粒径约为0.5~1μm.当P/Al化学计量比为3∶1时,煅烧后试样主要是Al掺杂的球状γ-Li3PO4固溶体.此样品1 000℃煅烧后,离子电导率为6.4×10-5S/cm,说明Al掺杂能有效提高γ-Li3PO4无机固体电解质离子电导率.1 100℃煅烧后,样品锂离子电导率降低.循环伏安曲线研究表明,Al掺杂γ-Li3PO4无机固体电解质样品在饱和LiNO3水溶液中具有较好的可逆性,其电化学窗口达到1.5V.  相似文献   

10.
以聚乙烯醇(PVA)、聚乙二醇(PEG)和KOH为原料,运用溶液浇注法制备了PVA-KOH-PEG-H2O电解质膜,采用X射线衍射(XRD)、扫描电镜(SEM)、交流阻抗(AC)和循环伏安(CV)等技术对其结构和性能进行表征。结果表明,碱性固体聚合物电解质膜(m(PVA)∶m(KOH)∶m(PEG)=1∶3∶1)的室温(15℃)电导率可达到0.106 S/cm,电导率与温度关系符合Arrhenius方程。XRD测试结果表明,PVA和PEG均以无定形形式存在于碱性固体聚合物电解质膜中;SEM测试结果表明,PVA和PEG在聚合物中形成均一的形貌;循环伏安曲线表明,碱性固体聚合物电解质膜的电化学稳定窗口为2.4 V。此外,组装了Al/AgO电池,并进行了充放电测试。  相似文献   

11.
新型核-多臂聚合物的合成和表征   总被引:1,自引:1,他引:0  
合成了以超支化聚缩水甘油为核,聚氨酯剂聚物为臂的新型星形聚合物,并利用核磁共振、Raman光谱、差热分析、X射线衍射等手段对其结构和性能进行了表征.结果表明,该聚合物超支化核的支化度为0.54,核臂比为1:4,且无明显结晶,呈无定型态.由自旋晶格驰豫时间Tl的变化可知,星形聚合物局部分子链段更容易运动.这些性质都有利于星形聚合物在固体电解质方面的应用.  相似文献   

12.
根据微机电系统(MEMS)封装中常用的阳极键合技术的特点,采用机械合金化法制备了高分子固体电解质,用作新的阳极键合材料。采用傅里叶红外光谱(FTIR)、X射线衍射(XRD)和同步辐射小角X射线技术(SAXS)等手段研究了锂盐加入量对络合成的阳极键合用聚氧乙烯(PEO)LiX的导电性能的影响,进而探讨了高分子固体电解质作为新型封装材料在阳极键合应用中的可行性。结果表明:相对于LiPF6,络合LiClO4更容易增加锂离子的迁移数,能更有效地阻碍高分子固体电解质的结晶,使得无定形区的含量增加;对于制备出的阳极键合用PEO-LiClO4高分子固体电解质材料,随着锂盐含量的增加,PEO与锂盐之间的络合结构变得更松弛,该络合体系的有序性变差,无序度增大,这种结构在静电场作用下更容易破坏,因而电导率更高,键合质量良好。  相似文献   

13.
对固体电解质化学传感器在高温热力学、动力学和火法冶金中的应用进行了总结和回顾 .  相似文献   

14.
聚合物固体电解质的研究取得了很大进展。概述了IPN固体电解质的研究状况,并对其发展前景作了简要讨论。  相似文献   

15.
染料敏化太阳能电池是近十几年来发展起来的新型高效率、低成本电池。电解质是关系到该电池稳定性的重要材料。介绍了染料敏化太阳能电池电解质的分类,讨论了准固态电解质和固态电解质的优缺点及其研究进展。使用传统的液态电解质获得的光电转换效率较高,但稳定性受到一定的影响,使用准固态电解质和固态电解质制备的染料敏化太阳能电池,稳定性有了较大的提高。重点讨论了准固态电解质以及无机p型半导体材料、有机p型半导体材料和导电高聚物等几种主要的固态电解质的特点和相应的电池稳定性。  相似文献   

16.
选用LiBOB作为掺杂盐,聚氧化乙烯(PEO)为主体,采用溶液浇铸法制备出不同组成的聚合物电解质膜,运用差热分析、电化学阻抗谱和计时电流进行测试.结果表明:LiBOB·(PEO)n聚合物电解质具有较好的导电性能,锂盐的浓度对体系的结晶度和导电性能有很大的影响.随着锂盐LiBOB浓度的增加,电导率呈现先上升后下降的趋势.当n(O):n(Li)=16:1时,LiBOB·(PEO)n聚合物电解质室温下的电导率达到最高,为5.8μS/cm,锂离子迁移数为0.39.  相似文献   

17.
新型核-多臂星形聚合物电解质   总被引:2,自引:1,他引:2  
采用傅里叶转换红外光谱法(FT-IR)、微分扫描量热分析(DSC)、离子阻抗谱等测试手段对以超支化聚缩水甘油(HPG)为核,线型聚氨酯(PEU)为臂的核-多臂星形聚合物进行了表征,对其分子结构与电导性能之间的关系进行了初步探索.结果表明,星形聚合物比线型聚合物有更强的溶盐能力和离子传输能力.氧锂比(氧化乙烯单元与锂离子的摩尔比)为4,共混比(质量)为30%时,体系的最高电导率可达0.2mS/cm.当星形聚合物的臂数为5时,体系的电导率高于相同条件下的其他臂数的聚合物体系.体系的电导率随温度的升高而升高,其变化规律符合Arrhcnius方程.  相似文献   

18.
凝胶聚合物电解质(GPE)因具有良好的力学加工性能、安全性能和较高的室温离子电导率而受到广泛关注。针对国内外通过修饰聚合物基体、优化有机增塑剂、改善锂盐、改善复合离子液体、加入无机粒子的方式对GPE的改性研究进行了相关总结与分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号