首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Droplets of Cu-20%Sb hypoeutectic alloy has been rapidly solidified in drop tube within the containerless condition. With the decrease of droplet diameter, undercooling increases and the microstructures of primary copper dendrite refines. Undercooling up to 207 K (0.17 T L) is obtained in experiment. Theoretic analysis indicated that because of the broad temperature range of solidification, the rapid growth of primary copper dendrite is controlled by the solutal diffusion. Judging from the calculation of T0 curve in the phase diagram, it is shown that the critical undercooling of segregationless solidification is δT 0 = 474 K. At the maximum undercooling of 207 K, the growth velocity of primary copper phase exceeds to 37 mm/s, and the distinct solute trapping occurs.  相似文献   

2.
Abstract Dendritic growth in Al-45% Ge hypoeutectic alloy has been investigated during free fall in a 3 m drop tube. Calculationsindicate that the undercooling obtained for the falling Al-45% Ge droplets ranges from 13 K to 201 K. The maximum undercooling attains0. 27 T_L. With the increase of undercooling, the primary (Al) phase undergoes a "columnar dendrite to equiaxed dendrite" structural tran-sition. According to the current rapid dendritic growth theory, the growth of primary (Al) phase is always controlled by solute diffusion.  相似文献   

3.
Bulk samples of Cu-80%Pb hypermonotectic alloy were undercooled by up to 270 K (0.21 TL) with glass fluxing technique. The undercooling behavior and the final microstructure were investigated experimentally. It was found that the macrosegregation decreased with the increase of undercooling exponentially. When undercooling reached 270 K, the volume fraction of macrosegregation was reduced by one order of magnitude. Meanwhile, high undercooling brought about significant changes to the microstructural morphology of S(Cu) phase. At small undercoolings, S(Cu) phase grew in dendritic manner. As undercooling increased, S(Cu) dendrite transformed gradually to spherical shell. This morphology transition was ascribed to the concurrent action of the phase separation within miscibility gap and the subsequent solidification process of L2 (Pb) matrix. As an essential step to model the final microstructure, theoretical calculations related to the nucleation of L1 (Cu) droplets were carried out.  相似文献   

4.
Peritectic solidification under high undercooling conditions   总被引:3,自引:1,他引:2  
The solidification characteristics of highly undercooled Cu-7.77%Co peritectic alloy has been examined by glass fluxing technique. The obtained undercoolings vary from 93 to 203 K(0.14 TL). It is found that the α(Co) phase always nucleates and grows preferentially, which is followed by peritectic transformation. This means that the peritectic phase cannot form directly, even though the alloy melt is undercooled to a temperature far below its peritectic point. The maximum recalescence temperature measured experimentally decreases as undercooling increases , which is lower than the thermodynamic calculation result owing to the actual non-adia-batic nature of recalescence process. The dendritic fragmentation of primary α(Co) phase induced by high undercooling is found to enhance the completion of peritectic transformation. In addition, the LKT/BCT dendrite growth model is modified in order to make it applicable to those binary alloy systems with seriously curved liquidus and solidus lines. The dendrite growth velocities of primary α(Co) phase are subsequently calculated as a function of undercooling on the basis of this model.  相似文献   

5.
Rapid eutectic growth during free fall   总被引:3,自引:0,他引:3  
Rapid eutectic growth of Sb-24%Cu alloy is realized in the drop tube during the free fall under the containerless condition. Based on the analysis of crystal nucleation and eutectic growth in the free fall condition, it is indicated that, with the increase of undercooling, microstructural transition of Sb-24%Cu eutectic alloy proceeds from lamellar to anomalous eutectic structure. Undercoolings of 0 –154 K have been obtained in experiment. The maximum undercooling exceeds to 0.19Te. Calculated results exhibit that Cu2Sb compound is the primary nucleation phase, and that the primary Sb dendrite will grow more rapidly than the eutectic structure when undercooling is larger than 40 K. The eutectic coupled zone around Sb-24%Cu eutectic alloy leads strongly to the Cu-rich side and covers a composition range from 23.0% to 32.7%Sb.  相似文献   

6.
研究了不同转速的旋转磁场对Pb-Bi合金凝固组织的影响,对于Pb-52%Bi亚共晶,旋转磁场能碎断枝晶,细化晶粒;对于Pb-66%Bi过共晶,旋转磁场能消除比重偏析。另外,采用硅油净化法结合水淬使Pb-52%Bi亚共晶和Pb-60.9%Bi过共晶分别获得了47 K和66 K的较大过冷度,对于Pb-52%Bi亚共晶,金属间化合物ε相枝晶细化显著;对于Pb-60.9%Bi过共晶,组织中没出现初生相Bi,只有细密的共晶组织。对于Pb-52%Bi亚共晶在快速凝固的同时加旋转磁场,过冷度由47 K增大为55 K,ε相呈细小颗粒弥散分布。  相似文献   

7.
Rapid growth behavior of ζ phase has been investigated in the undercooling experiments of Cu-14%Ge, Cu-15%Ge, Cu-18.5%Ge and Cu-22%Ge alloys. Alloys of the four compositions obtain the maximum undercoolings of 202 K(0.17TL), 245 K(0.20TL), 223 K(0.20TL) and 176 K(0.17TL), respectively. As the content of Ge increases, the microstructural transition of "a(Cu) dendrite + ζ" peritectic phase → ζ" peritectic phase →, ζ dendrite + (ε+ζ) eutectic" takes place in the alloy at small undercooling, while the microstructural transition of "fragmented α (Cu)dendrite + ζ peritectic phase →, ζ peritectic phase →ζ dendrite + ε phase" happens in the alloy at large undercooling. EDS analysis of the Ge content in peritectic phase indicates that undercooling enlarges the solid solubility of ζ rdendrite, which leads to a decrease in the Ge content in ζ phase as undercooling increases. In the Cu-18.5%Ge alloy composed of ζ peritectic phase, the Ge content in ζ phase increases when undercooling increases, which is due to the restraint of the Ge enrichment on the grain boundaries by high undercooling effect.  相似文献   

8.
The solidification of Pb-16%Sb hypereutectic alloy is investigated within ultrasonic field with a fre-quency of 15 kHz. It is found that the ultrasonic field promotes crystal nucleation and terminates the further bulk undercooling of the alloy melt. Theoretical analysis shows that the cavitation effect and the forced bulk vibration are the main factors that reduce the undercooling level. With the increase of ul-trasound intensity, the primary (Sb) phase experiences a growth mode transition from faceted to non-faceted branched growth, and the macrosegregation of primary (Sb) phase is gradually sup-pressed. In addition, the microstructures of Pb-Sb eutectic exhibit a conspicuous coarsening with in-creasing ultrasound intensity, and a structural transition of “lamellar eutectic—anomalous eutectic” occurs when ultrasound intensity rises up to 1.6 W/cm2. The ultrasonic field also changes the solute distribution adjacent to the solidification front, which lowers the Pb contents in primary (Sb) phase.  相似文献   

9.
Liquid Ni-31.7%Sn-2.5%Ge alloy was highly undercooled by up to 238 K(0.17TL) with glass fluxing and drop tube techniques.The dendritic growth velocity of primary Ni3Sn compound shows a power-law relation to undercooling and achieves a maximum velocity of 380 mm/s.The addition of Ge reduces its growth velocity as compared with the binary Ni75Sn25 alloy.A structural transition from coarse dendrites into equiaxed grains occurs once undercooling exceeds a critical value of about 125 K,which is accompanied by both grain refinement and solute trapping.The Ni3Sn intermetallic compound behaves like a normal solid solution phase showing nonfaceted growth during rapid solidification.  相似文献   

10.
An Al-Ti-Cu-Si solid-liquid dual-phase alloy that exhibits good wettability and appropriate interfacial reaction with SiC at 500-600℃ was designed for SiC-metal joining. The microstructure, phases, differential thermal curves, and high-temperature wetting behavior of the alloy were analyzed using scanning electron microscopy, X-ray diffraction analysis, differential scanning calorimetry, and the sessile drop method. The experimental results show that the 76.5Al-8.5Ti-5Cu-10Si alloy is mainly composed of Al-Al2Cu and Al-Si hypoeutectic low-melting-point microstructures (493-586℃) and the high-melting-point intermetallic compound AlTiSi (840℃). The contact angle, determined by high-temperature wetting experiments, is approximately 54°. Furthermore, the wetting interface is smooth and contains no obvious defects. Metallurgical bonding at the interface is attributable to the reaction between Al and Si in the alloy and ceramic, respectively. The formation of the brittle Al4C3 phase at the interface is suppressed by the addition of 10wt% Si to the alloy.  相似文献   

11.
Rapid solidification mechanism of Ag60Sb34Cu6 ternary alloy in drop tube   总被引:1,自引:0,他引:1  
Ternary eutectic growth involves competitive nu-cleation and growth of three solids from one liquid. Thesolidification behavior of ternary eutectic alloy is morecomplex than that of binary eutectic alloy due to the addi-tion of the third component[1—4]. Up to now, most scientificinvestigations on ternary eutectic alloy focus on the influ-ence of changing the component or adding a fourth even afifth element on the performance of the alloy[5—8]. How-ever, the information on crystal growth char…  相似文献   

12.
压力铸造对亚共晶Al-11Si-1.8Cu合金的组织细化作用   总被引:5,自引:0,他引:5  
以亚共晶铸造Al-11Si-1.8Cu合金为研究对象,基于普通重力铸造和高压压力铸造条件下合金的组织分析,研究了压力铸造对亚共晶Al-11Si-1.8Cu合金的组织细化作用,结果表明:与普通重力铸造相比,压力铸造不但能明显细化亚共晶Al-11Si-1.8Cu合金组织中的初生a-Al和共晶Si相,还使合金组织中初生a-Al相的形态由树枝状转变成了球状,并且随着高压压铸压力的增大,初生a-Al相的球状形态越圆整和细小,同时合金组织中共晶Si相的析出也明显受到抑制.  相似文献   

13.
Under the conventional solidification condition, a liquid aluminium alloy can be hardly undercooled because of oxidation. In this work, rapid solidification of an undercooled liquid Al80.4Cu13.6Si6 ternary eutectic alloy was realized by the glass fluxing method combined with recycled superheating. The relationship between superheating and undercooling was investigated at a certain cooling rate of the alloy melt. The maximum undercooling is 147 K (0.18T E). The undercooled ternary eutectic is composed of α(Al) solid solution, (Si) semiconductor and θ(CuAl2) intermetallic compound. In the (Al+Si+θ) ternary eutectic, (Si) faceted phase grows independently, while (Al) and θ non-faceted phases grow cooperatively in the lamellar mode. When undercooling is small, only (Al) solid solution forms as the leading phase. Once undercooling exceeds 73 K, (Si) phase nucleates firstly and grows as the primary phase. The alloy microstructure consists of primary (Al) dendrite, (Al+θ) pseudobinary eutectic and (Al+Si+θ) ternary eutectic at small undercooling, while at large undercooling primary (Si) block, (Al+θ) pseudobinary eutectic and (Al+Si+θ) ternary eutectic coexist. As undercooling increases, the volume fraction of primary (Al) dendrite decreases and that of primary (Si) block increases. Supported by the National Natural Science Foundation of China (Grant Nos. 50121101, 50395105) and the Doctorate Foundation of Northwestern Polytechnical University (Grant No. CX200419)  相似文献   

14.
深过冷Cu-Ni-Fe三元合金自定向快速凝固   总被引:5,自引:1,他引:4  
利用熔融玻璃净化结合循环过热,在25~304K过冷度范围,分析了Cu-39%Ni-6%Fe(wt%)三元合金凝固过程过冷组织的演化规律。确定了负温度梯度下实现自定向凝固的过冷度条件:下限为能够抑制快速凝固过程中形成的枝晶熟化的最低过冷度,上限为快速凝固过程中枝晶不发生准球状化转变的最高过冷度;就研究的合金而言,过冷度范围为110~180K。在定向凝固的过冷度范围内,无需人为控制固液界面前沿的温度梯度,而且,以点触发试样端部,可以获得单晶  相似文献   

15.
Dendritic growth is one of the most common micro-structural formation mechanisms during crystal growth. Its morphology provides the kinetics information of crystal growth. Therefore, it is valuable to perform the research on rapid dendrite growth in order…  相似文献   

16.
采用非真空熔铸方法制备的Cu-Cr-Zr合金,通过显微硬度、导电率测试以及扫描电子显微镜和能谱仪等试验方法和设备观察分析了材料的组织和性能。结果表明:非真空熔铸的Cu-1.02Cr-0.34Zr和Cu-0.90Cr-0.18Zr合金主要由Cu、Cu5Zr、和Cr组成。其铸态显微硬度和导电率分别达到HV102、HV100和51%IACS、53%IACS。经过800℃×50 h的热处理后,合金显微组织更加细小均匀。  相似文献   

17.
The rapid solidification of undercooled liquid Ni_(45)Fe_(40)Ti_(15)alloy was realized by glass fluxing technique.The microstructure of this alloy consists of primaryγ-(Fe,Ni)phase and a small amount of interdendritic pseudobinary eutectic.The primaryγ-(Fe,Ni)phase transferred from coarse dendrite to fragmented dendrite and the lamellar eutectic became fractured with the increase of undercooling.The growth velocity ofγ-(Fe,Ni)dendrite increased following a power relation with the rise of undercooling.The addition of solute Ti suppressed the rapid growth ofγ-(Fe,Ni)dendrite,as compared with the calculation results of Fe-Ni alloy based on LKT model.The microhardness values of the alloy and the primaryγ-(Fe,Ni)phase increased by 1.5 times owing to the microstructural refinement caused by the rapid dendrite growth.The difference was enlarged as undercooling increases,resulting from the enhanced hardening effects on the alloy from the increased grain boundaries and the second phase.  相似文献   

18.
A hypoeutectic 60Te–40Bi alloy in mass percent was designed as a tellurium atom evaporation source instead of pure tellurium for an ultraviolet detection photocathode. The alloy was prepared by slow solidification at about 10-2 K·s-1. The microstructure, crystal structure, chemical composition, and crystallographic orientation of each phase in the as-prepared alloy were investigated by optical microscopy, scanning electron microscopy, X-ray diffraction, electron backscatter diffraction, and transmission electron microscopy. The experimental results suggest that the as-prepared 60Te–40Bi alloy consists of primary Bi2Te3 and eutectic Bi2Te3/Te phases. The primary Bi2Te3 phase has the characteristics of faceted growth. The eutectic Bi2Te3 phase is encased by the eutectic Te phase in the eutectic structure. The purity of the eutectic Te phase reaches 100wt% owing to the slow solidification. In the eutectic phases, the crystallographic orientation relationship between Bi2Te3 and Te is confirmed as [0001]Bi2Te3//[1213]Te and the direction of Te phase parallel to [1120]Bi2Te3 is deviated by 18° from N(2111)Te.  相似文献   

19.
The rapid solidification behavior of Co-Sn alloys was investigated by melt spinning method.The growth morphology of αCo phase in Co-20% Sn hypoeutectic alloy changes senistively with cooling rate.A layer of columnar αCo dendrite forms near the roller side at low colling rates.This region becomes small and disappears as the cooling rate increases and a kind of very fine homogeneous microstructure characterized by the distribution of equiaxed αCo dendrites in γCo3Sn matrix is subsequently produced.For Co-34.2% Sn eutectic alloy,anomalous eutectic forms within the whole range of cooling rates.The increase of cooling rate has two obvious effects on both alloys:one is the microstructure refinement,and the other is that it produces more crystal defects to intensify the seattering of free electrons,leading to a remarkable increase of electrical resistivity,Under the condition that the grain boundary reflection coefficient γ approaches 1,the resistivity of rapidly solidified Co-Sn alloys can be predicted theoretically.  相似文献   

20.
Droplets of Ni-31.4%Pb monotectic alloy with different sizes are rapidly solidified during free fall in a drop tube. The theoretical calculations indicate that the undercooling was achieved before solidification exponentially depends on droplet diameter. The maximum undercooling of 241 K (0.15Tin) is obtained in the experiments. With the increase of undercooling, the volume fraction of monotectic cells increases, and the L2(Pb) grains are refined. Calculations of the nucleation rates of L2(Pb) and α-Ni phases indicate that L2(Pb) phase acts as the leading nucleation phase during the monotectic transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号