首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The skeletal muscles of the limbs develop from myogenic progenitors that originate in the paraxial mesoderm and migrate into the limb-bud mesenchyme. Among the genes known to be important for muscle development in mammalian embryos are those encoding the basic helix-loop-helix (bHLH) myogenic regulatory factors (MRFs; MyoD, Myf5, myogenin and MRF4) and Pax3, a paired-type homeobox gene that is critical for the development of limb musculature. Mox1 and Mox2 are closely related homeobox genes that are expressed in overlapping patterns in the paraxial mesoderm and its derivatives. Here we show that mice homozygous for a null mutation of Mox2 have a developmental defect of the limb musculature, characterized by an overall reduction in muscle mass and elimination of specific muscles. Mox2 is not needed for the migration of myogenic precursors into the limb bud, but it is essential for normal appendicular muscle formation and for the normal regulation of myogenic genes, as demonstrated by the downregulation of Pax3 and Myf5 but not MyoD in Mox2-deficient limb buds. Our findings show that the MOX2 homeoprotein is an important regulator of vertebrate limb myogenesis.  相似文献   

2.
3.
Boisvert CA  Mark-Kurik E  Ahlberg PE 《Nature》2008,456(7222):636-638
One of the identifying characteristics of tetrapods (limbed vertebrates) is the presence of fingers and toes. Whereas the proximal part of the tetrapod limb skeleton can easily be homologized with the paired fin skeletons of sarcopterygian (lobe-finned) fish, there has been much debate about the origin of digits. Early hypotheses interpreted digits as derivatives of fin radials, but during the 1990s the idea gained acceptance that digits are evolutionary novelties without direct equivalents in fish fin skeletons. This was partly based on developmental genetic data, but also substantially on the pectoral fin skeleton of the elpistostegid (transitional fish/tetrapod) Panderichthys, which appeared to lack distal digit-like radials. Here we present a CT scan study of an undisturbed pectoral fin of Panderichthys demonstrating that the plate-like 'ulnare' of previous reconstructions is an artefact and that distal radials are in fact present. This distal portion is more tetrapod-like than that found in Tiktaalik and, in combination with new data about fin development in basal actinopterygians, sharks and lungfish, makes a strong case for fingers not being a novelty of tetrapods but derived from pre-existing distal radials present in all sarcopterygian fish.  相似文献   

4.
Daeschler EB  Shubin NH  Jenkins FA 《Nature》2006,440(7085):757-763
The relationship of limbed vertebrates (tetrapods) to lobe-finned fish (sarcopterygians) is well established, but the origin of major tetrapod features has remained obscure for lack of fossils that document the sequence of evolutionary changes. Here we report the discovery of a well-preserved species of fossil sarcopterygian fish from the Late Devonian of Arctic Canada that represents an intermediate between fish with fins and tetrapods with limbs, and provides unique insights into how and in what order important tetrapod characters arose. Although the body scales, fin rays, lower jaw and palate are comparable to those in more primitive sarcopterygians, the new species also has a shortened skull roof, a modified ear region, a mobile neck, a functional wrist joint, and other features that presage tetrapod conditions. The morphological features and geological setting of this new animal are suggestive of life in shallow-water, marginal and subaerial habitats.  相似文献   

5.
Shubin NH  Daeschler EB  Jenkins FA 《Nature》2006,440(7085):764-771
Wrists, ankles and digits distinguish tetrapod limbs from fins, but direct evidence on the origin of these features has been unavailable. Here we describe the pectoral appendage of a member of the sister group of tetrapods, Tiktaalik roseae, which is morphologically and functionally transitional between a fin and a limb. The expanded array of distal endochondral bones and synovial joints in the fin of Tiktaalik is similar to the distal limb pattern of basal tetrapods. The fin of Tiktaalik was capable of a range of postures, including a limb-like substrate-supported stance in which the shoulder and elbow were flexed and the distal skeleton extended. The origin of limbs probably involved the elaboration and proliferation of features already present in the fins of fish such as Tiktaalik.  相似文献   

6.
Long JA  Young GC  Holland T  Senden TJ  Fitzgerald EM 《Nature》2006,444(7116):199-202
The transition from fishes to tetrapods was one of the most dramatic events in the evolution of vertebrates, but many pivotal fossils are incomplete, resulting in gaps in the data that are used for phylogenetic reconstruction. Here we present new observations from the most complete, acid-prepared Devonian tetrapodomorph fish yet discovered, Gogonasus, which was previously placed just crownward of Kenichthys and rhizodontids, the most primitive taxa on the tetrapod lineage. Unexpectedly, Gogonasus shows a mosaic of plesiomorphic and derived tetrapod-like features. Whereas the braincase and dermal cranial skeleton exhibit generalized morphologies with respect to Eusthenopteron or Panderichthys, taxa that are traditionally considered to be phyletically close to tetrapods, the presence of a deeply invaginated, wide spiracle, advanced internal spiracular architecture and near-horizontal hyomandibula are specialized features that are absent from Eusthenopteron. Furthermore, the pectoral fin skeleton of Gogonasus shares several features with that of Tiktaalik, the most tetrapod-like fish. A new phylogenetic analysis places Gogonasus crownward of Eusthenopteron as the sister taxon to the Elpistostegalia. Aspects of the basic tetrapod limb skeleton and middle ear architecture can now be traced further back within the tetrapodomorph radiation.  相似文献   

7.
Pierce SE  Clack JA  Hutchinson JR 《Nature》2012,486(7404):523-526
The origin of tetrapods and the transition from swimming to walking was a pivotal step in the evolution and diversification of terrestrial vertebrates. During this time, modifications of the limbs—particularly the specialization of joints and the structures that guide their motions—fundamentally changed the ways in which early tetrapods could move. Nonetheless, little is known about the functional consequences of limb anatomy in early tetrapods and how that anatomy influenced locomotion capabilities at this very critical stage in vertebrate evolution. Here we present a three-dimensional reconstruction of the iconic Devonian tetrapod Ichthyostega and a quantitative and comparative analysis of limb mobility in this early tetrapod. We show that Ichthyostega could not have employed typical tetrapod locomotory behaviours, such as lateral sequence walking. In particular, it lacked the necessary rotary motions in its limbs to push the body off the ground and move the limbs in an alternating sequence. Given that long-axis rotation was present in the fins of tetrapodomorph fishes, it seems that either early tetrapods evolved through an initial stage of restricted shoulder and hip joint mobility or that Ichthyostega was unique in this respect. We conclude that early tetrapods with the skeletal morphology and limb mobility of Ichthyostega were unlikely to have made some of the recently described Middle Devonian trackways.  相似文献   

8.
The kinematics and hydrodynamics of the escape response of yellow catfish ( Pelteobagrus fulvidraco ) is investigated.It is observed from digital high-speed camera that all the escape response of yellow catfish is a C-type fast-start, which is characterized by the C-shape of the fish body at the end of the first contraction of the lateral musculature. Based on the analysis of the mass center movement and the performance of the caudal fin, the fast-start process can be divided into two stages: in stage one the fish body rotates rapidly around its mass center and in stage two the fish begins moving straightly. Theoretically, the Weihs' model is employed to obtain the forces, moments and turning angular accelerations acting on the fish during the escape response. The results are in good agreement with the experimental observation. Furthermore, muscle strain at different locations along the body is calculated. At last, the dynamical performance of the escape response is explained.  相似文献   

9.
Afast startisahigh energyswimmingburststartingeitherfromrestorfromsteadyswimming[1] .Thefast startsareclassifiedintotwomaintypes ,C startandS start ,inwhichthefishbodyisbentintoa‘C’or‘S’shapeattheendofthefirstcontractionofthelateralmusculature .Fast startsareimportantformostfishinescapingpredatorsandachieving preycapture .Afast startprocesshastwoamazingcharac teristics.Oneistheturningmaneuver .Theturningmaneuveriscarriedoutveryrapidly ,withtheturningdiameterbeingequalto ,orevenlessthanth…  相似文献   

10.
Davis MC  Dahn RD  Shubin NH 《Nature》2007,447(7143):473-476
Comparative analyses of Hox gene expression and regulation in teleost fish and tetrapods support the long-entrenched notion that the distal region of tetrapod limbs, containing the wrist, ankle and digits, is an evolutionary novelty. Data from fossils support the notion that the unique features of tetrapod limbs were assembled over evolutionary time in the paired fins of fish. The challenge in linking developmental and palaeontological approaches has been that developmental data for fins and limbs compare only highly derived teleosts and tetrapods; what is lacking are data from extant taxa that retain greater portions of the fin skeletal morphology considered primitive to all bony fish. Here, we report on the expression and function of genes implicated in the origin of the autopod in a basal actinopterygian, Polyodon spathula. Polyodon exhibits a late-phase, inverted collinear expression of 5' HoxD genes, a pattern of expression long considered a developmental hallmark of the autopod and shown in tetrapods to be controlled by a 'digit enhancer' region. These data show that aspects of the development of the autopod are primitive to tetrapods and that the origin of digits entailed the redeployment of ancient patterns of gene activity.  相似文献   

11.
12.
基于鱼类肌肉水动力学的研究,利用鱼类尾鳍与微机器人摆翼运动相似性,对仿生鱼形微机器人摆翼所产生的推进力进行了分析。分析表明,鱼形微机器人推进力与流体的粘性系数、摆翼面积和偏移角等因素有关。  相似文献   

13.
Neural crest regulates myogenesis through the transient activation of NOTCH   总被引:1,自引:0,他引:1  
Rios AC  Serralbo O  Salgado D  Marcelle C 《Nature》2011,473(7348):532-535
How dynamic signalling and extensive tissue rearrangements interact to generate complex patterns and shapes during embryogenesis is poorly understood. Here we characterize the signalling events taking place during early morphogenesis of chick skeletal muscles. We show that muscle progenitors present in somites require the transient activation of NOTCH signalling to undergo terminal differentiation. The NOTCH ligand Delta1 is expressed in a mosaic pattern in neural crest cells that migrate past the somites. Gain and loss of Delta1 function in neural crest modifies NOTCH signalling in somites, which results in delayed or premature myogenesis. Our results indicate that the neural crest regulates early muscle formation by a unique mechanism that relies on the migration of Delta1-expressing neural crest cells to trigger the transient activation of NOTCH signalling in selected muscle progenitors. This dynamic signalling guarantees a balanced and progressive differentiation of the muscle progenitor pool.  相似文献   

14.
细锯脂鲤(Pristella maxillaris)因其成鱼体色透明而越来越受到模式生物研究学者们的青睐.本研究从组织形态学和细胞学水平连续观察了银膜和全透两个品系细锯脂鲤不同发育时期眼睛、鳃部、腹部、背鳍、臀鳍及尾鳍的特征.结果表明:(1)银膜系鱼中观察到3种色素细胞,发育时序为黑色素细胞、虹彩细胞和黄色素细胞;全透...  相似文献   

15.
Dickinson M  Farman G  Frye M  Bekyarova T  Gore D  Maughan D  Irving T 《Nature》2005,433(7023):330-334
Flight in insects--which constitute the largest group of species in the animal kingdom--is powered by specialized muscles located within the thorax. In most insects each contraction is triggered not by a motor neuron spike but by mechanical stretch imposed by antagonistic muscles. Whereas 'stretch activation' and its reciprocal phenomenon 'shortening deactivation' are observed to varying extents in all striated muscles, both are particularly prominent in the indirect flight muscles of insects. Here we show changes in thick-filament structure and actin-myosin interactions in living, flying Drosophila with the use of synchrotron small-angle X-ray diffraction. To elicit stable flight behaviour and permit the capture of images at specific phases within the 5-ms wingbeat cycle, we tethered flies within a visual flight simulator. We recorded images of 340 micros duration every 625 micros to create an eight-frame diffraction movie, with each frame reflecting the instantaneous structure of the contractile apparatus. These time-resolved measurements of molecular-level structure provide new insight into the unique ability of insect flight muscle to generate elevated power at high frequency.  相似文献   

16.
Dahn RD  Davis MC  Pappano WN  Shubin NH 《Nature》2007,445(7125):311-314
The genetic mechanisms regulating tetrapod limb development are well characterized, but how they were assembled during evolution and their function in basal vertebrates is poorly understood. Initial studies report that chondrichthyans, the most primitive extant vertebrates with paired appendages, differ from ray-finned fish and tetrapods in having Sonic hedgehog (Shh)-independent patterning of the appendage skeleton. Here we demonstrate that chondrichthyans share patterns of appendage Shh expression, Shh appendage-specific regulatory DNA, and Shh function with ray-finned fish and tetrapods. These studies demonstrate that some aspects of Shh function are deeply conserved in vertebrate phylogeny, but also highlight how the evolution of Shh regulation may underlie major morphological changes during appendage evolution.  相似文献   

17.
目的 探究用户在VDT作业中使用有托和无托的键盘对人体上肢相关肌肉活动及主观舒适度的影响,并完成上肢肌肉的活性筛选。方法 经过调研,抽选10名被试,通过让被试分别使用有托键盘与无托键盘进行一定时间段的键盘输入,实验后选取上肢肌肉活动影响较大的肌肉块,并分析相关部位主观舒适度。结果 使用有托键盘,上肢肱二头肌(BB)和拇短展肌(APB)负荷明显降低,可提升受试者右手与右手腕的主观舒适度。使用无托键盘,除对受试者的右手与右手腕有不舒适影响,对其余各个部位的主观舒适度均无影响。此外,经肌肉贡献率的量化计算,筛选出几块活性较强、伸缩性较大的上肢肌肉,给予后续应用。结论 使用有手托键盘可有效减小上肢中前臂肌肉负荷,并增加右手腕与右手的主观舒适度。活性较强、伸缩性较大的上肢肌肉排序,即伸腕桡侧肌(ECR)、 屈腕桡侧肌(FCR) 、伸腕尺肌(ECU)和拇短展肌(APB)。  相似文献   

18.
Boisvert CA 《Nature》2005,438(7071):1145-1147
One of the most marked transformations in the vertebrate transition to land was that of fins to limbs. This transformation involved not only the generation of morphological novelties (digits, sacrum) but also a shift in locomotory dominance from the pectoral to the pelvic appendage. Despite its importance, the transformation from pelvic fin to hindlimb is the least studied and least well-documented part of this transformation, which is bracketed by the osteolepiform Eusthenopteron and the early tetrapods Ichthyostega and Acanthostega, but is not directly illuminated by any intermediate form. Panderichthys is the closest tetrapod relative currently represented by complete fossils, but its pelvic fin skeleton has not been described. Here, I present the only known articulated pelvic fin endoskeleton and associated partial pelvis of Panderichthys. The pelvic girdle is even less tetrapod-like than that of the osteolepiform Eusthenopteron, but the pelvic fin endoskeleton shares derived characteristics with basal tetrapods despite being more primitive than the pectoral fin of Panderichthys. The evolution of tetrapod locomotion appears to have passed through a stage of body-flexion propulsion, in which the pelvic fins played a relatively minor anchoring part, before the emergence of hindlimb-powered propulsion in the interval between Panderichthys and Acanthostega.  相似文献   

19.
王龙  Cao  Zhiqiang  Tan  Min  Wang  Shuo 《高技术通讯(英文版)》2007,13(4):343-349
A mechanical design method of robot fish is introduced in this paper.Based on this method an antonomous 3-Dimension(3D)locomotion robot fish with two pectoral fins and a caudal fin is developed.The pectoral fin mechanism has 3 degrees of freedom(3-DOFs),which enables the robot fish to realize yawing and pitching motions by controlling two pectoral fins.And the caudal fin mechanism is designed based on fish body wave curve fitting.The forward velocity can be adjusted by changing the caudal mechanism's oscillating frequency.Finally a physical implementation of the robot fish and experimental results are given.  相似文献   

20.
绝缘手套法是配网带电作业的主要作业方式,为获取穿戴绝缘手套的带电作业人员上肢肌肉的疲劳特性及其诱发的肌肉骨骼系统疾患(work-related musculoskeletal disorders,WMSDs)的风险,开展了基于表面肌电信号(surface electromyogra-phy,sEMG)的绝缘手套法带电作业人员上肢肌肉疲劳评估研究.针对配网绝缘手套法的典型作业工况,搭建了绝缘手套法带电作业上肢的sEMG试验平台,采集受试者上肢(右手)各目标肌肉在是否穿戴绝缘手套下的sEMG信号;基于时域特征参数积分肌电值(integrated electromyography,IEMG)、均方根值(root mean square,RMS)及频域特征参数平均功率频率(mean power frequency,MPF)、中位频率(median frequency,MDF)对绝缘手套的上肢肌肉疲劳特征进行评估;基于支持向量机(support vector machine,SVM)构建了带电作业人员上肢肱桡肌疲劳状态识别模型.结果表明:穿戴绝缘手套作业时各目标肌肉更容易进入疲劳状态;穿戴绝缘手套作业时,作业人员上肢部位的肱桡肌、肱二头肌、肱三头肌、三角肌的疲劳程度依次递减,与仿真计算的分析结果一致;sEMG时域特征参数IEMG、RMS对作业人员上肢肌肉疲劳的表征效果要优于频域特征参数MPF和MDF;带电作业人员上肢肱桡肌疲劳状态识别模型总体平均准确率为86.56%,能有效识别上肢肱桡肌肌肉疲劳状态.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号