首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
LDL-receptor-related proteins in Wnt signal transduction   总被引:58,自引:0,他引:58  
Tamai K  Semenov M  Kato Y  Spokony R  Liu C  Katsuyama Y  Hess F  Saint-Jeannet JP  He X 《Nature》2000,407(6803):530-535
The Wnt family of secreted signalling molecules are essential in embryo development and tumour formation. The Frizzled (Fz) family of serpentine receptors function as Wnt receptors, but how Fz proteins transduce signalling is not understood. In Drosophila, arrow phenocopies the wingless (DWnt-1) phenotype, and encodes a transmembrane protein that is homologous to two members of the mammalian low-density lipoprotein receptor (LDLR)-related protein (LRP) family, LRP5 and LRP6 (refs 12-15). Here we report that LRP6 functions as a co-receptor for Wnt signal transduction. In Xenopus embryos, LRP6 activated Wnt-Fz signalling, and induced Wnt responsive genes, dorsal axis duplication and neural crest formation. An LRP6 mutant lacking the carboxyl intracellular domain blocked signalling by Wnt or Wnt-Fz, but not by Dishevelled or beta-catenin, and inhibited neural crest development. The extracellular domain of LRP6 bound Wnt-1 and associated with Fz in a Wnt-dependent manner. Our results indicate that LRP6 may be a component of the Wnt receptor complex.  相似文献   

3.
JR James  RD Vale 《Nature》2012,487(7405):64-69
A T-cell-mediated immune response is initiated by the T-cell receptor (TCR) interacting with peptide-bound major histocompatibility complex (pMHC) on an infected cell. The mechanism by which this interaction triggers intracellular phosphorylation of the TCR, which lacks a kinase domain, remains poorly understood. Here, we have introduced the TCR and associated signalling molecules into a non-immune cell and reconstituted ligand-specific signalling when these cells are conjugated with antigen-presenting cells. We show that signalling requires the differential segregation of a phosphatase and kinase in the plasma membrane. An artificial, chemically controlled receptor system generates the same effect as TCR–pMHC, demonstrating that the binding energy of an extracellular protein–protein interaction can drive the spatial segregation of membrane proteins without a transmembrane conformational change. This general mechanism may extend to other receptors that rely on extrinsic kinases, including, as we demonstrate, chimaeric antigen receptors being developed for cancer immunotherapy.  相似文献   

4.
Smad-dependent and Smad-independent pathways in TGF-beta family signalling   总被引:3,自引:0,他引:3  
Derynck R  Zhang YE 《Nature》2003,425(6958):577-584
  相似文献   

5.
P75 interacts with the Nogo receptor as a co-receptor for Nogo,MAG and OMgp   总被引:96,自引:0,他引:96  
Wang KC  Kim JA  Sivasankaran R  Segal R  He Z 《Nature》2002,420(6911):74-78
In inhibiting neurite outgrowth, several myelin components, including the extracellular domain of Nogo-A (Nogo-66), oligodendrocyte myelin glycoprotein (OMgp) and myelin-associated glycoprotein (MAG), exert their effects through the same Nogo receptor (NgR). The glycosyl phosphatidylinositol (GPI)-anchored nature of NgR indicates the requirement for additional transmembrane protein(s) to transduce the inhibitory signals into the interior of responding neurons. Here, we demonstrate that p75, a transmembrane protein known to be a receptor for the neurotrophin family of growth factors, specifically interacts with NgR. p75 is required for NgR-mediated signalling, as neurons from p75 knockout mice are no longer responsive to myelin and to each of the known NgR ligands. Blocking the p75-NgR interaction also reduces the activities of these inhibitors. Moreover, a truncated p75 protein lacking the intracellular domain, when overexpressed in primary neurons, attenuates the same set of inhibitory activities, suggesting that p75 is a signal transducer of the NgR-p75 receptor complex. Thus, interfering with p75 and its downstream signalling pathways may allow lesioned axons to overcome most of the inhibitory activities associated with central nervous system myelin.  相似文献   

6.
SMAD proteins control DROSHA-mediated microRNA maturation   总被引:3,自引:0,他引:3  
Davis BN  Hilyard AC  Lagna G  Hata A 《Nature》2008,454(7200):56-61
  相似文献   

7.
H Riedel  T J Dull  J Schlessinger  A Ullrich 《Nature》1986,324(6092):68-70
The cell surface receptors for insulin and epidermal growth factor (EGF) appear to share a common evolutionary origin, as suggested by structural similarity of cysteine-rich regions in their extracellular domains and a highly conserved tyrosine-specific protein kinase domain. Only minor similarity is found outside this catalytic domain, as expected for receptors that have different ligand specificities and generate different biological signals. The EGF receptor is a single polypeptide chain but the insulin receptor consists of distinct alpha and beta subunits that function as an alpha 2 beta 2 heterotetrameric receptor complex. Provoked by this major structural difference in two receptors that carry out parallel functions, we have designed a chimaeric receptor molecule comprising the extracellular portion of the insulin receptor joined to the transmembrane and intracellular domains of the EGF receptor to investigate whether one ligand will activate the tyrosine kinase domain of the receptor for the other ligand. We show here that the EGF receptor kinase domain of the chimaeric protein, expressed transiently in simian cells, is activated by insulin binding. This strongly suggests that insulin and EGF receptors employ closely related or identical mechanisms for signal transduction across the plasma membrane.  相似文献   

8.
T Michel  J M Reichhart  J A Hoffmann  J Royet 《Nature》2001,414(6865):756-759
Microbial infection activates two distinct intracellular signalling cascades in the immune-responsive fat body of Drosophila. Gram-positive bacteria and fungi predominantly induce the Toll signalling pathway, whereas Gram-negative bacteria activate the Imd pathway. Loss-of-function mutants in either pathway reduce the resistance to corresponding infections. Genetic screens have identified a range of genes involved in these intracellular signalling cascades, but how they are activated by microbial infection is largely unknown. Activation of the transmembrane receptor Toll requires a proteolytically cleaved form of an extracellular cytokine-like polypeptide, Sp?tzle, suggesting that Toll does not itself function as a bona fide recognition receptor of microbial patterns. This is in apparent contrast with the mammalian Toll-like receptors and raises the question of which host molecules actually recognize microbial patterns to activate Toll through Sp?tzle. Here we present a mutation that blocks Toll activation by Gram-positive bacteria and significantly decreases resistance to this type of infection. The mutation semmelweis (seml) inactivates the gene encoding a peptidoglycan recognition protein (PGRP-SA). Interestingly, seml does not affect Toll activation by fungal infection, indicating the existence of a distinct recognition system for fungi to activate the Toll pathway.  相似文献   

9.
ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner   总被引:1,自引:0,他引:1  
R-spondin proteins strongly potentiate Wnt signalling and function as stem-cell growth factors. Despite the biological and therapeutic significance, the molecular mechanism of R-spondin action remains unclear. Here we show that the cell-surface transmembrane E3 ubiquitin ligase zinc and ring finger 3 (ZNRF3) and its homologue ring finger 43 (RNF43) are negative feedback regulators of Wnt signalling. ZNRF3 is associated with the Wnt receptor complex, and inhibits Wnt signalling by promoting the turnover of frizzled and LRP6. Inhibition of ZNRF3 enhances Wnt/β-catenin signalling and disrupts Wnt/planar cell polarity signalling in vivo. Notably, R-spondin mimics ZNRF3 inhibition by increasing the membrane level of Wnt receptors. Mechanistically, R-spondin interacts with the extracellular domain of ZNRF3 and induces the association between ZNRF3 and LGR4, which results in membrane clearance of ZNRF3. These data suggest that R-spondin enhances Wnt signalling by inhibiting ZNRF3. Our study provides new mechanistic insights into the regulation of Wnt receptor turnover, and reveals ZNRF3 as a tractable target for therapeutic exploration.  相似文献   

10.
Mao B  Wu W  Davidson G  Marhold J  Li M  Mechler BM  Delius H  Hoppe D  Stannek P  Walter C  Glinka A  Niehrs C 《Nature》2002,417(6889):664-667
The Wnt family of secreted glycoproteins mediate cell cell interactions during cell growth and differentiation in both embryos and adults. Canonical Wnt signalling by way of the beta-catenin pathway is transduced by two receptor families. Frizzled proteins and lipoprotein-receptor-related proteins 5 and 6 (LRP5/6) bind Wnts and transmit their signal by stabilizing intracellular beta-catenin. Wnt/beta-catenin signalling is inhibited by the secreted protein Dickkopf1 (Dkk1), a member of a multigene family, which induces head formation in amphibian embryos. Dkk1 has been shown to inhibit Wnt signalling by binding to and antagonizing LRP5/6. Here we show that the transmembrane proteins Kremen1 and Kremen2 are high-affinity Dkk1 receptors that functionally cooperate with Dkk1 to block Wnt/beta-catenin signalling. Kremen2 forms a ternary complex with Dkk1 and LRP6, and induces rapid endocytosis and removal of the Wnt receptor LRP6 from the plasma membrane. The results indicate that Kremen1 and Kremen2 are components of a membrane complex modulating canonical Wnt signalling through LRP6 in vertebrates.  相似文献   

11.
NLRX1 is a regulator of mitochondrial antiviral immunity   总被引:1,自引:0,他引:1  
The RIG-like helicase (RLH) family of intracellular receptors detect viral nucleic acid and signal through the mitochondrial antiviral signalling adaptor MAVS (also known as Cardif, VISA and IPS-1) during a viral infection. MAVS activation leads to the rapid production of antiviral cytokines, including type 1 interferons. Although MAVS is vital to antiviral immunity, its regulation from within the mitochondria remains unknown. Here we describe human NLRX1, a highly conserved nucleotide-binding domain (NBD)- and leucine-rich-repeat (LRR)-containing family member (known as NLR) that localizes to the mitochondrial outer membrane and interacts with MAVS. Expression of NLRX1 results in the potent inhibition of RLH- and MAVS-mediated interferon-beta promoter activity and in the disruption of virus-induced RLH-MAVS interactions. Depletion of NLRX1 with small interference RNA promotes virus-induced type I interferon production and decreases viral replication. This work identifies NLRX1 as a check against mitochondrial antiviral responses and represents an intersection of three ancient cellular processes: NLR signalling, intracellular virus detection and the use of mitochondria as a platform for anti-pathogen signalling. This represents a conceptual advance, in that NLRX1 is a modulator of pathogen-associated molecular pattern receptors rather than a receptor, and identifies a key therapeutic target for enhancing antiviral responses.  相似文献   

12.
G0 is a major growth cone protein subject to regulation by GAP-43   总被引:18,自引:0,他引:18  
G0, a GTP-binding protein that transduces information from transmembrane receptors, has been found to be a major component of the neuronal growth cone membrane. GAP-43, an intracellular growth cone protein closely associated with neuronal growth, stimulates GTP-gamma-S binding to G0. It does so through an amino-terminal domain homologous to G-linked transmembrane receptors. Thus, G0 in the growth cone may be regulated by intracellular as well as extracellular signals.  相似文献   

13.
K K Kim  H Yokota  S H Kim 《Nature》1999,400(6746):787-792
The bacterial chemotaxis receptors are transmembrane receptors with a simple signalling pathway which has elements relevant to the general understanding of signal recognition and transduction across membranes, how signals are relayed between molecules in a pathway, and how adaptation to a persistent signal is achieved. In contrast to many mammalian receptors which signal by oligomerizing upon ligand binding, the chemotaxis receptors are dimeric even in the absence of their ligands, and their signalling does not depend on a monomer-dimer equilibrium. Bacterial chemotaxis receptors are composed of a ligand-binding domain, a transmembrane domain consisting of two helices TM1 and TM2, and a cytoplasmic domain. All known bacterial chemotaxis receptors have a highly conserved cytoplasmic domain, which unites signals from different ligand domains into a single signalling pathway to flagella motors. Here we report the crystal structure of the cytoplasmic domain of a serine chemotaxis receptor of Escherichia coli, which reveals a 200 A-long coiled-coil of two antiparallel helices connected by a 'U-turn'. Two of these domains form a long, supercoiled, four-helical bundle in the cytoplasmic portion of the receptor.  相似文献   

14.
Jones RB  Gordus A  Krall JA  MacBeath G 《Nature》2006,439(7073):168-174
Although epidermal growth factor receptor (EGFR; also called ErbB1) and its relatives initiate one of the most well-studied signalling networks, there is not yet a genome-wide view of even the earliest step in this pathway: recruitment of proteins to the activated receptors. Here we use protein microarrays comprising virtually every Src homology 2 (SH2) and phosphotyrosine binding (PTB) domain encoded in the human genome to measure the equilibrium dissociation constant of each domain for 61 peptides representing physiological sites of tyrosine phosphorylation on the four ErbB receptors. This involved 77,592 independent biochemical measurements and provided a quantitative protein interaction network that reveals many new interactions, including ones that fall outside of our current view of domain selectivity. By slicing through the network at different affinity thresholds, we found surprising differences between the receptors. Most notably, EGFR and ErbB2 become markedly more promiscuous as the threshold is lowered, whereas ErbB3 does not. Because EGFR and ErbB2 are overexpressed in many human cancers, our results suggest that the extent to which promiscuity changes with protein concentration may contribute to the oncogenic potential of receptor tyrosine kinases, and perhaps other signalling proteins as well.  相似文献   

15.
16.
Signalling through the receptor protein Notch, which is involved in crucial cell-fate decisions during development, requires ligand-induced cleavage of Notch. This cleavage occurs within the predicted transmembrane domain, releasing the Notch intracellular domain (NICD), and is reminiscent of gamma-secretase-mediated cleavage of beta-amyloid precursor protein (APP), a critical event in the pathogenesis of Alzheimer's disease. A deficiency in presenilin-1 (PS1) inhibits processing of APP by gamma-secretase in mammalian cells, and genetic interactions between Notch and PS1 homologues in Caenorhabditis elegans indicate that the presenilins may modulate the Notch signalling pathway. Here we report that, in mammalian cells, PS1 deficiency also reduces the proteolytic release of NICD from a truncated Notch construct, thus identifying the specific biochemical step of the Notch signalling pathway that is affected by PS1. Moreover, several gamma-secretase inhibitors block this same step in Notch processing, indicating that related protease activities are responsible for cleavage within the predicted transmembrane domains of Notch and APP. Thus the targeting of gamma-secretase for the treatment of Alzheimer's disease may risk toxicity caused by reduced Notch signalling.  相似文献   

17.
Crystal structure of the β2 adrenergic receptor-Gs protein complex   总被引:1,自引:0,他引:1  
G protein-coupled receptors (GPCRs) are responsible for the majority of cellular responses to hormones and neurotransmitters as well as the senses of sight, olfaction and taste. The paradigm of GPCR signalling is the activation of a heterotrimeric GTP binding protein (G protein) by an agonist-occupied receptor. The β(2) adrenergic receptor (β(2)AR) activation of Gs, the stimulatory G protein for adenylyl cyclase, has long been a model system for GPCR signalling. Here we present the crystal structure of the active state ternary complex composed of agonist-occupied monomeric β(2)AR and nucleotide-free Gs heterotrimer. The principal interactions between the β(2)AR and Gs involve the amino- and carboxy-terminal α-helices of Gs, with conformational changes propagating to the nucleotide-binding pocket. The largest conformational changes in the β(2)AR include a 14 ? outward movement at the cytoplasmic end of transmembrane segment 6 (TM6) and an α-helical extension of the cytoplasmic end of TM5. The most surprising observation is a major displacement of the α-helical domain of Gαs relative to the Ras-like GTPase domain. This crystal structure represents the first high-resolution view of transmembrane signalling by a GPCR.  相似文献   

18.
Zhang J  Hupfeld CJ  Taylor SS  Olefsky JM  Tsien RY 《Nature》2005,437(7058):569-573
Hormones mobilize intracellular second messengers and initiate signalling cascades involving protein kinases and phosphatases, which are often spatially compartmentalized by anchoring proteins to increase signalling specificity. These scaffold proteins may themselves be modulated by hormones. In adipocytes, stimulation of beta-adrenergic receptors increases cyclic AMP levels and activates protein kinase A (PKA), which stimulates lipolysis by phosphorylating hormone-sensitive lipase and perilipin. Acute insulin treatment activates phosphodiesterase 3B, reduces cAMP levels and quenches beta-adrenergic receptor signalling. In contrast, chronic hyperinsulinaemic conditions (typical of type 2 diabetes) enhance beta-adrenergic receptor-mediated cAMP production. This amplification of cAMP signalling is paradoxical because it should enhance lipolysis, the opposite of the known short-term effect of hyperinsulinaemia. Here we show that in adipocytes, chronically high insulin levels inhibit beta-adrenergic receptors (but not other cAMP-elevating stimuli) from activating PKA. We measured this using an improved fluorescent reporter and by phosphorylation of endogenous cAMP-response-element binding protein (CREB). Disruption of PKA scaffolding mimics the interference of insulin with beta-adrenergic receptor signalling. Chronically high insulin levels may disrupt the close apposition of beta-adrenergic receptors and PKA, identifying a new mechanism for crosstalk between heterologous signal transduction pathways.  相似文献   

19.
J C Walker  R Zhang 《Nature》1990,345(6277):743-746
The protein kinase family of enzymes mediates the responses of eukaryotic cells to both inter- and intracellular signals. These enzymes are either serine/threonine-specific or tyrosine-specific. Many of the latter are transmembrane receptors and are important in transduction of extracellular signals across the plasma membrane, whereas few examples of receptor serine kinases have been reported. We have now identified a complementary DNA clone from Zea mays (L.) encoding a putative serine/threonine-specific protein kinase structurally related to the receptor tyrosine kinases. This structural similarity is evidence for a previously undescribed class of transmembrane receptor in higher plants likely to be involved in signal reception and transduction. Furthermore, the catalytic domain of this protein kinase is linked through a transmembrane domain to an extracellular domain similar to that of glycoproteins encoded in the self-incompatibility locus of Brassica which are involved in the self-recognition system between pollen and stigma.  相似文献   

20.
Members of the tumour-necrosis factor receptor (TNFR) family that contain an intracellular death domain initiate signalling by recruiting cytoplasmic death domain adapter proteins. Edar is a death domain protein of the TNFR family that is required for the development of hair, teeth and other ectodermal derivatives. Mutations in Edar-or its ligand, Eda-cause hypohidrotic ectodermal dysplasia in humans and mice. This disorder is characterized by sparse hair, a lack of sweat glands and malformation of teeth. Here we report the identification of a death domain adapter encoded by the mouse crinkled locus. The crinkled mutant has an hypohidrotic ectodermal dysplasia phenotype identical to that of the edar (downless) and eda (Tabby) mutants. This adapter, which we have called Edaradd (for Edar-associated death domain), interacts with the death domain of Edar and links the receptor to downstream signalling pathways. We also identify a missense mutation in its human orthologue, EDARADD, that is present in a family affected with hypohidrotic ectodermal dysplasia. Our findings show that the death receptor/adapter signalling mechanism is conserved in developmental, as well as apoptotic, signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号