共查询到20条相似文献,搜索用时 15 毫秒
1.
《吉林师范大学学报(自然科学版)》2015,(4)
设φ(n)为Euler函数,探讨了方程φ(x-φ(x))=2与φ(φ((x-φ)))=2正整数解问题,通过正整数的分解利用初等方法给出了这2个方程的所有正整数解. 相似文献
2.
《云南民族大学学报(自然科学版)》2017,(4):296-298
研究了方程φ(x-φ_2(x))=2与φ_2(x-φ_2(x))=2的正整数解的问题,利用初等方法给出了这两个方程的所有正整数解,其中φ(n)是Euler函数,φ_2(n)是广义Euler函数. 相似文献
3.
《山西大学学报(自然科学版)》2017,(2)
对任一正整数N,φ(N)为Euler函数,Ω(N)为N的素因数个数函数。讨论了方程φ(N)=2~(Ω(N))3~(Ω(N))的可解性,基于整数的分解获得了该方程的解。 相似文献
4.
张四保 《北华大学学报(自然科学版)》2019,20(1)
令φ(n)为Euler函数,φ_e(n)为广义Euler函数.讨论了Euler函数φ(n)与广义Euler函数φ_2(n)混合的两个方程φ_2(φ(m-φ_2(m)))=2与φ(φ_2(m-φ2(m)))=2的正整数解,利用分类讨论的方式及初等方法,分别得到了这两个方程各自的所有正整数解. 相似文献
5.
令φ(n)是Euler函数,它是数论中重要的数论函数之一.包含Euler函数φ(n)的线性方程整数解的研究成果极为丰富.本文考虑了当b取某些整数时的包含Euler函数φ(n)非线性方程φ(xy)=k1φ(x)+k2φ(y)±b.对于奇数b,利用初等的方法证明了该方程有整数解时b,k1与k2的一些条件.并结合所给出的条件讨论了几个具体方程的整数解,给出了它们的各自的整数解.对于偶数b,讨论了一个具体形式的方程的整数解,利用初等的方法给出了其全部的整数解. 相似文献
6.
针对Euler函数φ(n)与函数ω(n)混合的形如φ(n)=2~(ω(n))q_1~(ω(n)q2ω(n))…q_k~(ω(n))的方程的可解性,其中q_1,q_2,…,q_k为互异的奇素数,提出了方程φ(n)=2~(ω(n)5ω(n))的可解问题,利用Euler函数φ(n)与函数ω(n)的有关性质以及初等方法,得到了该方程的全部13组整数解n=1,11,202,250,2 222,2 510,2 750,3 012,3 750,27 610,37 650,41 250,414 150. 相似文献
7.
讨论了一个有关Euler函数φ(n)的非线性方程φ(mn)=7φ(m)+8φ(n)+16的解,利用整数的分解以及Euler函数φ(n)的性质给出了其全部的52组解. 相似文献
8.
《江汉大学学报(自然科学版)》2016,(1):18-21
对于任意正整数n,S(n),SL(n),φ2(n)分别为Smarandache函数,Smarandache LCM函数和广义Euler函数。利用S(n),SL(n),φ2(n)的基本性质并结合初等方法研究了方程S(SL(n))=φ2(n)的可解性,给出了该方程的所有正整数解为n=20,24,25,32,36,50,54。 相似文献
9.
10.
利用广义欧拉函数的性质和初等的方法与技巧,研究e∈{2,3,4,6}时,方程φ_e(n)=2~(tω(n))的可解性,给出其部分正整数解. 相似文献
11.
主要利用初等方法和解析方法,对包含Smarandache函数和Euler函数的方程S(SL(n))=φ~2(n)进行研究,并给出了方程的两个正整数解。 相似文献
12.
设φ(n)为Euler函数,利用初等方法与技巧,分别研究了复合欧拉函数方程φ(φ(n-φ(φ(n)))=8,10的可解性问题,分别得到了两个方程的所有正整数解.此外,熟练地掌握这类方程的运算过程对于相似复合数论函数方程可解性的研究大有裨益. 相似文献
13.
讨论了与广义Euler函数φ_2(n)有关的两个方程φ_2(x-φ_2(x))=2与φ_2(φ_2(x-φ_2(x)))=2的可解性,利用初等的方法给出了方程φ_2(x-φ_2(x))=2所有的5个整数解,方程φ_2(φ_2(x-φ_2(x)))=2所有的26个整数解. 相似文献
14.
孙树东 《北华大学学报(自然科学版)》2015,(2):161-164
设N为正整数,φ(N)为Euler函数.讨论了方程φ(xy)=7(φ(x)+φ(y))的可解性问题,利用初等方法给出了其全部的正整数解. 相似文献
15.
蔡天新 《山东大学学报(理学版)》1989,(1)
本文用解析方法得到了均值估计sum from n≥3 to n≤x 1/logφ(n)=x sum from j=1 to a-a_j/log~jx O(x/log~(a 1)x)其中φ(n)是Euler函数,a为任意自然数,a_1=1,a_2=1-sum from p 1/plog(1-1/p),一般地 a_j=(-1)~(j-1)E~(j-1)(t)|t=0这里 E(t)=1/(t 1) multiply from p(1-1/p)(1 1/p(1-1/p)~(t-1)) 相似文献
16.
17.
18.
19.
利用广义欧拉函数的性质和初等的方法与技巧,研究e∈{2,3,4,6}时,方程φe(n)=p tω(n)(p为奇素数)的可解性,给出其部分正整数解及无解的几个充分条件. 相似文献
20.