首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mori T  Vale RD  Tomishige M 《Nature》2007,450(7170):750-754
Kinesin-1 (conventional kinesin) is a dimeric motor protein that carries cellular cargoes along microtubules by hydrolysing ATP and moving processively in 8-nm steps. The mechanism of processive motility involves the hand-over-hand motion of the two motor domains ('heads'), a process driven by a conformational change in the neck-linker domain of kinesin. However, the 'waiting conformation' of kinesin between steps remains controversial-some models propose that kinesin adopts a one-head-bound intermediate, whereas others suggest that both the kinesin heads are bound to adjacent tubulin subunits. Addressing this question has proved challenging, in part because of a lack of tools to measure structural states of the kinesin dimer as it moves along a microtubule. Here we develop two different single-molecule fluorescence resonance energy transfer (smFRET) sensors to detect whether kinesin is bound to its microtubule track by one or two heads. Our FRET results indicate that, while moving in the presence of saturating ATP, kinesin spends most of its time bound to the microtubule with both heads. However, when nucleotide binding becomes rate-limiting at low ATP concentrations, kinesin waits for ATP in a one-head-bound state and makes brief transitions to a two-head-bound intermediate as it walks along the microtubule. On the basis of these results, we suggest a model for how transitions in the ATPase cycle position the two kinesin heads and drive their hand-over-hand motion.  相似文献   

2.
Actin-dependent organelle movement in squid axoplasm.   总被引:44,自引:0,他引:44  
S A Kuznetsov  G M Langford  D G Weiss 《Nature》1992,356(6371):722-725
Studies of organelle movement in axoplasm extruded from the squid giant axon have led to the basic discoveries of microtubule-dependent organelle motility and the characterization of the microtubule-based motor proteins kinesin and cytoplasmic dynein. Rapid organelle movement in higher animal cells, especially in neurons, is considered to be microtubule-based. The role of actin filaments, which are also abundant in axonal cytoplasm, has remained unclear. The inhibition of organelle movement in axoplasm by actin-binding proteins such as DNase I, gelsolin and synapsin I has been attributed to their ability to disorganize the microtubule domains where most of the actin-filaments are located. Here we provide evidence of a new type of organelle movement in squid axoplasm which is independent of both microtubules and microtubule-based motors. This movement is ATP-dependent, unidirectional, actin-dependent, and probably generated by a myosin-like motor. These results demonstrate that an actomyosin-like mechanism can be directly involved in the generation of rapid organelle transport in nerve cells.  相似文献   

3.
Bead movement by single kinesin molecules studied with optical tweezers   总被引:37,自引:0,他引:37  
S M Block  L S Goldstein  B J Schnapp 《Nature》1990,348(6299):348-352
Kinesin, a mechanoenzyme that couples ATP hydrolysis to movement along microtubules, is thought to power vesicle transport and other forms of microtubule-based motility. Here, microscopic silica beads were precoated with carrier protein, exposed to low concentrations of kinesin, and individually manipulated with a single-beam gradient-force optical particle trap ('optical tweezers') directly onto microtubules. Optical tweezers greatly improved the efficiency of the bead assay, particularly at the lowest kinesin concentrations (corresponding to approximately 1 molecule per bead). Beads incubated with excess kinesin moved smoothly along a microtubule for many micrometres, but beads carrying from 0.17-3 kinesin molecules per bead, moved, on average, only about 1.4 microns and then spontaneously released from the microtubule. Application of the optical trap directly behind such moving beads often pulled them off the microtubule and back into the centre of the trap. This did not occur when a bead was bound by an AMP.PNP-induced rigor linkage, or when beads were propelled by several kinesin molecules. Our results are consistent with a model in which kinesin detaches briefly from the microtubule during a part of each mechanochemical cycle, rather than a model in which kinesin remains bound at all times.  相似文献   

4.
Quantized velocities at low myosin densities in an in vitro motility assay.   总被引:9,自引:0,他引:9  
T Q Uyeda  H M Warrick  S J Kron  J A Spudich 《Nature》1991,352(6333):307-311
An in vitro motility assay has been developed in which single actin filaments move on one or a few heavy meromyosin (HMM) molecules. This movement is slower than when many HMM molecules are involved, in contrast to analogous experiments with microtubules and kinesin. Frequency analysis shows that sliding speeds distribute around integral multiples of a unitary velocity. This discreteness may be due to differences in the numbers of HMM molecules interacting with each actin filament, where the unitary velocity reflects the activity of one HMM molecule. The value of the unitary velocity predicts a step size of 5-20 nm per ATP, which is consistent with the conventional swinging crossbridge model for myosin function.  相似文献   

5.
B M Paschal  R A Obar  R B Vallee 《Nature》1989,342(6249):569-572
Two main types of microtubule-associated proteins (MAPs) have been identified in neuronal cells. The fibrous MAPs, including MAP2 and tau, serve to organize and regulate the assembly of microtubules. A second distinct class of force-producing MAPs, including kinesin, dynein and dynamin, are involved in microtubule-based movement. These proteins are mechanochemical ATPases which seem to be responsible for the bidirectional transport of organelles and perhaps also the movement of chromosomes. Here we report that MAP2 inhibits microtubule gliding on dynein-coated coverslips, as well as the microtubule-activated ATPase of dynein, indicating that MAP2 and other fibrous MAPs could be important modulators of microtubule-based motility in vivo. By proteolytic modification of tubulin, we found that dynein interacts with microtubules at the C termini of alpha- and beta-tubulin, the regions previously reported to be the sites for the interaction of MAP2. The use of site-directed antibodies implicates a small region of alpha- and beta-tubulin, containing the sequence Glu-Gly-Glu-Glu, as the site of the interaction of dynein and MAP2 with the microtubule.  相似文献   

6.
Microtubule and microfilament cytoskeletons play key roles in the whole process of cytokinesis. Although a number of hypotheses have been proposed to elucidate the mechanism of cytokinesis by microtubule and actin flament cytoskeletons, many reports are conflicting. In our study,combining the cytoskeletons drug treatments with the time-lapse video technology, we retested the key roles of microtubule and actin filament in cytokinesis. The results showed that depolymerization of microtubules by Nocodazole after the initiation of furrowing would not inhibit the furrow ingression, but obviously decrease the stiffness of daughter cells. Depolymerizing actin filaments by Cytochalasin B before metaphase would inhibit the initiation of furrowing but not chromosome segregation, resulting in the formation of binucleate cells; however, depolymerizing actin fillaments during anaphase would prevent furrowing and lead to the regress of established furrow, also resulting in the formation of binucleate cells. Further, depolymerizing microtubules and actin filaments simultaneously after metaphase would cause the quick regress of the furrow and the formation of binudeate cells. From these results we propose that a successful cytokinesis requires functions and coordination of both the microtubule and actin filament cytoskeletons.Microtubule cytoskeleton may function in the positioning and initiation of cleavage furrow, and the actin filament cytoskeleton may play key roles in the initiation and ingression of the furrow.  相似文献   

7.
Tying a molecular knot with optical tweezers.   总被引:15,自引:0,他引:15  
Y Arai  R Yasuda  K Akashi  Y Harada  H Miyata  K Kinosita  H Itoh 《Nature》1999,399(6735):446-448
Filamentous structures are abundant in cells. Relatively rigid filaments, such as microtubules and actin, serve as intracellular scaffolds that support movement and force, and their mechanical properties are crucial to their function in the cell. Some aspects of the behaviour of DNA, meanwhile, depend critically on its flexibility-for example, DNA-binding proteins can induce sharp bends in the helix. The mechanical characterization of such filaments has generally been conducted without controlling the filament shape, by the observation of thermal motions or of the response to external forces or flows. Controlled buckling of a microtubule has been reported, but the analysis of the buckled shape was complicated. Here we report the continuous control of the radius of curvature of a molecular strand by tying a knot in it, using optical tweezers to manipulate the strand's ends. We find that actin filaments break at the knot when the knot diameter falls below 0.4 microm. The pulling force at breakage is around 1 pN, two orders of magnitude smaller than the tensile stress of a straight filament. The flexural rigidity of the filament remained unchanged down to this diameter. We have also knotted a single DNA molecule, opening up the possibility of studying curvature-dependent interactions with associated proteins. We find that the knotted DNA is stronger than actin.  相似文献   

8.
Movement of microtubules by single kinesin molecules   总被引:46,自引:0,他引:46  
J Howard  A J Hudspeth  R D Vale 《Nature》1989,342(6246):154-158
Kinesin is a motor protein that uses energy derived from ATP hydrolysis to move organelles along microtubules. Using a new technique for measuring the movement produced in vitro by individual kinesin molecules, it is shown that a single kinesin molecule can move a microtubule for several micrometers. New information about the mechanism of force generation by kinesin is presented.  相似文献   

9.
A structural change in the kinesin motor protein that drives motility   总被引:34,自引:0,他引:34  
Kinesin motors power many motile processes by converting ATP energy into unidirectional motion along microtubules. The force-generating and enzymatic properties of conventional kinesin have been extensively studied; however, the structural basis of movement is unknown. Here we have detected and visualized a large conformational change of an approximately 15-amino-acid region (the neck linker) in kinesin using electron paramagnetic resonance, fluorescence resonance energy transfer, pre-steady state kinetics and cryo-electron microscopy. This region becomes immobilized and extended towards the microtubule 'plus' end when kinesin binds microtubules and ATP, and reverts to a more mobile conformation when gamma-phosphate is released after nucleotide hydrolysis. This conformational change explains both the direction of kinesin motion and processive movement by the kinesin dimer.  相似文献   

10.
Four ATP-binding sites in the midregion of the beta heavy chain of dynein.   总被引:27,自引:0,他引:27  
K Ogawa 《Nature》1991,352(6336):643-645
The 'motor' proteins of eukaryotic cells contain specialized domains that hydrolyse ATP to produce force and movement along a cytoskeletal polymer (actin in the case of the myosin family; microtubules in the case of the kinesin family and dyneins). There are motor-protein superfamilies in which each member has a conserved force-generating domain joined to a different 'tail' which conveys specific attachment properties. The minus-end-directed microtubule motors, the dyneins, may also constitute a superfamily of force-generating proteins with distinct attachment domains. Axonemal outer-arm dynein from sea urchin spermatozoa is a multimeric protein consisting of two heavy chains (alpha and beta) with ATPase activity, three intermediate chains and several light chains. Here I report the sequence of cloned complementary DNA encoding the beta heavy chain of a dynein motor molecule. The predicted amino-acid sequence reveals four ATP-binding consensus sequences in the central domain. The dynein beta heavy chain is thought to associate transiently with a microtubule during ATP hydrolysis, but the ATP-dependent microtubule-binding sequence common to the kinesin superfamily is not found in the dynein beta heavy chain. These unique features distinguish the dynein beta heavy chain from other motor protein superfamilies and may be characteristic of the dynein superfamily.  相似文献   

11.
S A Cohn  A L Ingold  J M Scholey 《Nature》1987,328(6126):160-163
Coupling between ATP hydrolysis and microtubule movement was demonstrated several years ago in flagellar axonemes and subsequent studies suggest that the relevant microtubule motor, dynein, uses ATP to drive microtubule sliding by a cross-bridge mechanism analogous to that of myosin in muscles. Kinesin, a microtubule-based motility protein which may participate in organelle transport and mitosis, binds microtubules in a nucleotide-sensitive manner, and requires hydrolysable nucleotides to translocate microtubules over a glass surface. Recently, neuronal kinesin was shown to possess microtubule-activated ATPase activity although coupling between ATP hydrolysis and motility was not demonstrated. Here we report that sea urchin egg kinesin, prepared either with or without a 5'-adenylyl imidodiphosphate(AMPPNP)-induced microtubule binding step, also possesses significant microtubule-activated ATPase activity when Mg-ATP is used as a substrate. This ATPase activity is inhibited in a dose-dependent manner by addition of Mg-free ATP, by chelation of Mg2+ with EDTA, by addition of Na3VO4, or by addition of AMPPNP with or without Mg2+. Addition of these same reagents also inhibits the microtubule-translocating activities of sea urchin egg kinesin in a dose-dependent manner, supporting the hypothesis that kinesin-driven motility is coupled to the microtubule-activated Mg2+-ATPase activity.  相似文献   

12.
Tracking kinesin-driven movements with nanometre-scale precision   总被引:44,自引:0,他引:44  
J Gelles  B J Schnapp  M P Sheetz 《Nature》1988,331(6155):450-453
Several enzyme complexes drive cellular movements by coupling free energy-liberating chemical reactions to the production of mechanical work. A key goal in the study of these systems is to characterize at the molecular level mechanical events associated with individual reaction steps in the catalytic cycles of single enzyme molecules. Ideally, one would like to measure movements driven by single (or a few) enzyme molecules with sufficient temporal resolution and spatial precision that these events can be directly observed. Kinesin, a force-generating ATPase involved in microtubule-based intracellular organelle transport, will drive the unidirectional movement of microscopic plastic beads along microtubules in vitro. Under certain conditions, a few (less than or equal to 10) kinesin molecules may be sufficient to drive either bead movement or organelle transport. Here we describe a method for determining precise positional information from light-microscope images. The method is applied to measure kinesin-driven bead movements in vitro with a precision of 1-2 nm. Our measurements reveal basic mechanical features of kinesin-driven movements along the microtubule lattice, and place significant constraints on possible molecular mechanisms of movement.  相似文献   

13.
Localization of cytoplasmic dynein to mitotic spindles and kinetochores   总被引:98,自引:0,他引:98  
E R Steuer  L Wordeman  T A Schroer  M P Sheetz 《Nature》1990,345(6272):266-268
What is the origin of the forces generating chromosome and spindle movements in mitosis? Both microtubule dynamics and microtubule-dependent motors have been proposed as the source of these motor forces. Cytoplasmic dynein and kinesin are two soluble proteins that power membranous organelle movements on microtubules. Kinesin directs movement of organelles to the 'plus' end of microtubules, and is found at the mitotic spindle in sea urchin embryos, but not in mammalian cells. Cytoplasmic dynein translocates organelles to the 'minus' end of microtubules, and is composed of two heavy chains and several light chains. We report here that monoclonal antibodies to two of these subunits and to another polypeptide that associates with dynein localize the protein to the mitotic spindle and to the kinetochores of isolated chromosomes, suggesting that cytoplasmic dynein is important in powering movements of the spindle and chromosomes in dividing cells.  相似文献   

14.
Endow SA  Higuchi H 《Nature》2000,406(6798):913-916
Molecular motors move directionally to either the plus or the minus end of microtubules or actin filaments. Kinesin moves towards microtubule plus ends, whereas the kinesin-related Ncd motor moves to the minus ends. The 'neck'--the region between the stalk and motor domain--is required for Ncd to move to microtubule minus ends, but the mechanism underlying directional motor movement is not understood. Here we show that a single amino-acid change in the Ncd neck causes the motor to reverse directions and move with wild-type velocities towards the plus or minus end; thus, the neck is functional but directionality is defective. Mutation of a motor-core residue that touches the neck residue in crystal structures also results in movement in both directions, indicating that directed movement to the minus end requires interactions of the neck and motor core. Low-density laser-trap assays show that a conformational change or working stroke of the Ncd motor is directional and biased towards the minus end, whereas that of the neck mutant occurs in either direction. We conclude that the directional bias of the working stroke is dependent on neck/motor core interactions. Absence of these interactions removes directional constraints and permits movement in either direction.  相似文献   

15.
Myosin VI is an actin-based motor that moves backwards.   总被引:15,自引:0,他引:15  
Myosins and kinesins are molecular motors that hydrolyse ATP to track along actin filaments and microtubules, respectively. Although the kinesin family includes motors that move towards either the plus or minus ends of microtubules, all characterized myosin motors move towards the barbed (+) end of actin filaments. Crystal structures of myosin II (refs 3-6) have shown that small movements within the myosin motor core are transmitted through the 'converter domain' to a 'lever arm' consisting of a light-chain-binding helix and associated light chains. The lever arm further amplifies the motions of the converter domain into large directed movements. Here we report that myosin VI, an unconventional myosin, moves towards the pointed (-) end of actin. We visualized the myosin VI construct bound to actin using cryo-electron microscopy and image analysis, and found that an ADP-mediated conformational change in the domain distal to the motor, a structure likely to be the effective lever arm, is in the opposite direction to that observed for other myosins. Thus, it appears that myosin VI achieves reverse-direction movement by rotating its lever arm in the opposite direction to conventional myosin lever arm movement.  相似文献   

16.
Bieling P  Laan L  Schek H  Munteanu EL  Sandblad L  Dogterom M  Brunner D  Surrey T 《Nature》2007,450(7172):1100-1105
The microtubule cytoskeleton is essential to cell morphogenesis. Growing microtubule plus ends have emerged as dynamic regulatory sites in which specialized proteins, called plus-end-binding proteins (+TIPs), bind and regulate the proper functioning of microtubules. However, the molecular mechanism of plus-end association by +TIPs and their ability to track the growing end are not well understood. Here we report the in vitro reconstitution of a minimal plus-end tracking system consisting of the three fission yeast proteins Mal3, Tip1 and the kinesin Tea2. Using time-lapse total internal reflection fluorescence microscopy, we show that the EB1 homologue Mal3 has an enhanced affinity for growing microtubule end structures as opposed to the microtubule lattice. This allows it to track growing microtubule ends autonomously by an end recognition mechanism. In addition, Mal3 acts as a factor that mediates loading of the processive motor Tea2 and its cargo, the Clip170 homologue Tip1, onto the microtubule lattice. The interaction of all three proteins is required for the selective tracking of growing microtubule plus ends by both Tea2 and Tip1. Our results dissect the collective interactions of the constituents of this plus-end tracking system and show how these interactions lead to the emergence of its dynamic behaviour. We expect that such in vitro reconstitutions will also be essential for the mechanistic dissection of other plus-end tracking systems.  相似文献   

17.
To understand the molecular basis of microtubule-associated motility during mitosis, the mechanochemical factors that generate the relevant motile force must be identified. Myosin, the ATPase that interacts with actin to produce the force for muscle contraction and other forms of cell motility, is believed to be involved in cytokinesis but not in mitosis. Dynein, the mechanochemical enzyme that drives microtubule sliding in eukaryotic cilia and flagella, has been identified in the cytoplasm of sea urchin eggs, but the evidence that it is involved in cytoplasmic microtubule-based motility (rather than serving as a precursor for embryonic cilia) is equivocal. Microtubule-associated ATPases have been prepared from other tissues, but their role in cytoplasmic motility is also unknown. Recent work on axoplasmic transport, however, has led to the identification of a novel mechanochemical protein called kinesin, which is thought to generate the force for moving vesicles along axonal microtubules. These results suggest that kinesin may also be a mechanochemical factor for non-axoplasmic forms of microtubule-based motility, such as mitosis. We describe here the identification and isolation of a kinesin-like protein from the cytoplasm of sea urchin eggs. We present evidence that this protein is localized in the mitotic spindle, and propose that it may be a mechanochemical factor for some form of motility associated with the mitotic spindle.  相似文献   

18.
I Hagan  M Yanagida 《Nature》1992,356(6364):74-76
Several mitotic and meiotic gene products are related to the microtubule motor kinesin, providing insight into the molecular basis of the complex motile events responsible for spindle formation and function. Of these genes, three have been shown to affect spindle structure when mutated. The most severe phenotype is seen in Aspergillus nidulans bimC and Schizosaccharomyces pombe cut7 mutants. In both fungi the intranuclear spindle is bipolar, with microtubules that emanate from spindle pole bodies at either pole, interdigitating in a central overlap zone. In bimC and cut7 mutants, microtubule interdigitation does not appear to take place, instead two unconnected half spindles form and chromosome separation fails. Here we report that cut7 protein concentrates on or near the spindle pole bodies throughout mitotic and meiotic nuclear division and associates with mitotic spindle microtubules in a stage-specific manner, associating with the mid-anaphase B midzone. In cut7ts mutants, spindle pole bodies stain but mitotic microtubules do not.  相似文献   

19.
Retrograde transport by the microtubule-associated protein MAP 1C   总被引:20,自引:0,他引:20  
B M Paschal  R B Vallee 《Nature》1987,330(6144):181-183
Microtubules are involved in several forms of intracellular motility, including mitosis and organelle movement. Fast axonal transport is a highly ordered form of organelle motility that operates in both the anterograde (outwards from the cell body) and retrograde (from the periphery towards the cell body) direction. Similar microtubule-associated movement is observed in non-neuronal cells, and might be involved in secretion, endocytosis and the positioning of organelles within the cell. Kinesin is a mechanochemical protein that produces force along microtubules in an anterograde direction. We recently found that the brain microtubule-associated protein MAP 1C (ref. 7) is a microtubule-activated ATPase and, like kinesin, can translocate microtubules in an in vitro assay for microtubule-associated motility. MAP 1C seemed to be related to the ciliary and flagellar ATPase, dynein, which is thought to produce force in a direction opposite to that observed for kinesin. Here we report that MAP 1C, in fact, acts in a direction opposite to kinesin, and has the properties of a retrograde translocator.  相似文献   

20.
K Dellagi  J C Brouet 《Nature》1982,298(5871):284-286
Intermediate filaments (IF) constitute a major cytoplasmic filamentous network of higher eukaryotic cells that is distinct from actin and myosin microfilaments or microtubules. Although structurally similar, these filaments are formed by chemically and antigenically different proteins. Vimentin is the major IF polypeptide of mesenchymal cells and cultured non-mesenchymal cell lines. Recently, we have characterized a monoclonal IgM antibody from a patient with Waldenstr?m's macroglobulinaemia which is directed against vimentin. Using this monoclonal antibody, we have shown by direct immunofluorescence that intermediate filaments of human B and T lymphocytes consist of vimentin. In cells exposed to colcemid, the intermediate filaments retracted into a juxtanuclear aggregate ('coli') characteristic of vimentin filaments. As most components of the cytoskeleton, especially actin and myosin, have been implicated in the capping phenomenon, we investigated the effect of capping of either beta 2-microglobulin or membrane immunoglobulins on the organization of the intermediate filament network. We report that capping of these surface molecules induced the redistribution of vimentin just beneath the cap. When colcemid-treated cells were allowed to cap, the location of the cap always coincided with the coil, suggesting that the anchorage point of intermediate filaments is situated within the uropod.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号