首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 472 毫秒
1.
作为第三代汽车钢的一种,淬火-碳配分-回火(Q-P-T)工艺制备的高强度钢显微组织由先形成马氏体、新鲜马氏体和残余奥氏体构成.本文利用激光共聚焦显微镜,观察了一次淬火时马氏体和未转变奥氏体分布的不均匀形成过程.在此基础上,进一步表征了在不均匀的基体中,Q-P-T工艺获得的马氏体具有多尺度的分布特征;同时,二次淬火获得的新鲜马氏体具有:1)更细的板条尺寸;2)在一个块状区域内具有相同的取向,可视为一个"packet";3)更高的力学性能.研究结果客观地展示了Q-P-T制备高强度钢的微观组织演化本质,为进一步改进Q-P-T工艺、提高性能提供了准确的理论依据.  相似文献   

2.
轧辊的弹性变形导致金属极薄带难以通过常规方法制备,人们想尽各种办法来获得更薄的轧件,如减小轧辊直径、增加支撑轧数量、增加轧辊和机架刚度等,这些方法使极薄带的制备变得复杂.本文采用组合成形轧制(combination forming rolling, CFR)新方法,将常规轧制的压缩作用、异步轧制的搓轧剪切作用和施加大张力的拉伸作用等三种工艺措施共同作用于轧制变形区,构造出易于满足屈服条件的应力状态,保持压下变形的可持续性.为了验证这种方法的可行性,在室温下对退火态工业纯铝板进行了组合成形轧制.实验结果表明,在没有中间退火的情况下,初始厚度为6.5 mm的1100铝板轧制成厚度为17μm极薄带,产品表面光滑、板形良好、无边缘裂纹,组合成形轧制的延展率达到38235%,真应变为5.95,充分体现出组合成形超强的变形能力.在剧烈塑性变形发生的同时,金属Al内部的显微组织也随之发生演变,由原始粗大的等轴晶演变为扁平的板条晶、亚微晶,直至出现纳米晶.以大应变、超延展、纳米化为特征的组合成形轧制将成为剧烈塑性变形中一个重要的新方法.  相似文献   

3.
微成形中尺寸效应研究的进展   总被引:1,自引:0,他引:1  
微纳米尺度下微细工件塑性变形中会出现尺寸效应,即随着工件尺寸的减小材料的应力应变关系、塑性成形性能和摩擦系数等成形工艺参数呈现出与常规尺寸工件的塑性变形不同的特点,对于尺寸效应的研究是微成形工艺研究的基础.本文首先综述了实验观察到的各种尺寸效应现象,如随着晶粒尺寸的减小塑性变形机理发生变化,从而导致Hall-Petch关系的变化.然后,介绍了为描述材料应力应变关系中出现的尺寸效应而提出的各种材料模型,其中考虑表面层晶粒体积分数、工件尺寸与晶粒尺寸的比值、应变梯度等因素的影响对经典塑性塑性力学模型进行的修正可以从现象学的角度描述尺寸效应,而基于位错运动、统计存储和几何必须位错密度的演化、晶界滑动等塑性变形机理的的本构模型,不仅能更准确地描述尺寸效应等塑性变形行为,而且能更深入地揭示尺寸效应的物理本质.另外,对于尺寸因素与极限应变的关系和摩擦中呈现的尺寸效应研究也进行了介绍.  相似文献   

4.
地震作用下,钢管混凝土柱容易受到扭转作用而发生压-扭破坏,扭矩作用将导致钢管混凝土柱的破坏加剧.本文首先建立了能够同时考虑混凝土非均质特性和混凝土/钢管接触行为的钢管混凝土柱力学分析模型及其数值模拟方法,进而模拟研究了钢管混凝土柱在压-扭联合作用下的失效破坏行为和尺寸效应规律.主要分析了截面尺寸、轴压比、含钢率和截面形状对钢管混凝土柱破坏模式、名义抗扭强度及其尺寸效应行为的影响.结果表明:随轴压比的增大,钢管混凝土柱抗扭承载力呈现先增大后减小的趋势,且当轴压比在0.4左右时,抗扭承载力达到最大值;钢管混凝土柱在压-扭联合作用下存在一定程度的尺寸效应,且根据本文模拟工况,名义抗扭强度下降幅度可达24%;此外,随轴压比的增大,名义抗扭强度的尺寸效应行为呈现先削弱后增强的趋势.基于本文数值试验数据及作者前期研究工作,提出了考虑轴压比和含钢率影响的钢管混凝土柱名义抗扭强度尺寸效应公式.  相似文献   

5.
利用纳米力学探针对传统的淬火-回火中碳马氏体钢的微观硬度分布进行了评价. 在1000 mN载荷下, 硬度的标准偏差与平均值之比为15.4%, 而在9.8 N下的维氏硬度该比值为1.5%. 结合电子背散射分析和扫描电子显微镜观察表明, 纳米硬度值的分散并非主要来源于马氏体板条的晶体取向, 而是由于在亚微米尺度上微结构(如渗碳体的分布)的不均匀造成的. 对具有不同取向的钨单晶(001), (101)和(111)的纳米力学探针测量表明, 晶体取向造成的纳米硬度值分散性很小. 对另一种具有相同化学成分但经过热轧变形导致渗碳体分布更加细小而均匀的马氏体钢的纳米力学探针测量表明, 其纳米硬度值分散性比传统的马氏体钢要小得多. 这两个结果都进一步佐证了上述结论.  相似文献   

6.
Ni2MnGa铁磁形状记忆材料   总被引:1,自引:0,他引:1  
铁磁形状记忆合金 (FSMA)是在一定温度范围马氏体相稳定同时又具铁磁性的一类特殊的形状记忆合金。Ni2MnGa铁磁形状记忆合金近年来成为呈现磁场驱动大应变的新型驱动材料 ,这些应变来自磁场诱发马氏体孪晶的重排 ,而不是磁场对奥氏体至马氏体相变的作用。孪晶变体的重排在宏观上呈现为正或切应变 ,一非化学计量比Ni2 MnGa单晶于室温加 0 .4T磁场能产生6 %的应变 ,Ni Mn Ga单晶在高至 15 0Hz的交变磁场仍可得到 2 .5 %的应变。本文阐述了与这种磁控形状记忆效应相关的孪晶界迁动的磁学和晶体学理论。马氏体相的大磁晶各向异性能使磁化沿c轴方向有利 ,穿过孪晶界c轴刚好转动 90度 ,同时 ,这个孪晶界也构成了约 90度的畴界。在各向异性的情况下 ,孪晶界的迁动仅有相邻孪晶变体的Zeeman能差驱动 ,μ0 ΔMis·Hi。磁场和外应力对应变的影响通过对一简单的自由能表达式取极小值来表示 ,自由能表达式包括Zeeman能、磁晶各向异性能和外应力以及在某些情况下需考虑的内部弹性能 ,模型的所有参数可通过应力 应变曲线和磁化曲线测量得到。铁磁形状记忆合金的磁场诱发应变可类比传统热弹性形状记忆效应 ,与更为人们所熟知的磁致伸缩现象不同。  相似文献   

7.
在微纳米尺度的机电敏感结构表面进行功能分子层修饰,通过与目标靶分子特异性结合,在表面形成Gibbs自由能的变化,由此产生的纳机械表面应力可被结构上集成的机电敏感元件转换成实时电信号输出.首先对固体表面分子层自组装产生纳机械表面应力的机制进行研究,将表面上形成的单分子层(self-assembled monolayer,SAM)按作用原理在纵向(即分子层厚度方向)上分为头基、分子链和尾基三层结构分别进行了基于纳机械敏感实验的原理揭示,在此基础上发明了一种作图法来定量评估和分析自组装分子层对表面能变化的作用.为使分子作用产生纳机械敏感效应在痕量生化分子快速检测识别中得到应用,首次将纵向分子特异性作用和相邻分子间横向作用区分开来,通过不同类型分子间作用的分析和实验验证得到如下结论:横向分子作用是产生表面应力值大小和正负(张应力或压应力)的决定性因素,而分子纵向作用主要是通过对分子层自组装有序性的调节来影响表面应力产生.在对各种横向分子作用机制分析的基础上,提出并用实验验证了分子间氢键作用可产生最高灵敏度的纳机械敏感效应.此后介绍了特异性分子作用产生表面应力的敏感效应在生化痕量快速检测传感器的应用.采用微纳悬臂梁作为敏感效应的转换器,将表面应力转换为悬臂梁弯曲,利用集成在悬臂梁内的压阻器件进行电信号输出.通过在悬臂梁表面金薄膜上修饰巯基双层分子敏感基团,实现了对ppb量级有机磷毒害蒸气的快速检测.为实现敏感分子层长期稳定工作,针对TNT爆炸物分子检测提出并实现了在悬臂梁硅表面直接两次嫁接自组装硅烷基敏感基团,进而解决了传感器对ppt量级TNT检测的长期稳定性问题.通过对传感器电绝缘的有效处理,又实现了对1.5×10-11 mol/m L浓度链霉亲和素的生物溶液在线检测.  相似文献   

8.
以退火态工业纯铝、纯铜薄带为原料,将8层铜带、7层铝带,共15层以相互交替方式叠在一起,利用自行研制的微成形轧机,在室温下对其进行多道次轧制.在没有任何中间退火等热处理的情况下,当累积应变达到83%时,通过OM观察发现冷轧大变形后的Cu/Al界面处有新相形成.经SEM/EDS分析,发现这些新相是金属间化合物Al_2Cu/AlCu/Al_4Cu_9的混合物,是由反应扩散获得的产物.这些金属间化合物与原有的金属母体构成了一种新的复合材料.特别有意义的是:由于实测和有限元模拟计算两种方法都证实轧制过程中温升低于28℃,因此该反应扩散不是缘于常见的"热"作用,而是由于室温大变形轧制中应力-应变的作用.本文将这种现象称为变形诱导反应扩散,并对其机理进行了分析和阐述.该研究结果是在室温下加工获得金属间化合物的一个实验证据,为获得一类新型复合材料提供了新途径.  相似文献   

9.
为研究喷砂与喷丸前处理及超音速火焰喷涂(HVOF)WC-17Co金属陶瓷涂层对新型超高强度TC21钛合金疲劳性能的影响,利用旋转弯曲疲劳试验机研究了疲劳性能的变化规律,利用X射线衍射仪、表面粗糙度仪、显微硬度计、扫描电子显微镜和X射线应力测试仪等分析了前处理及涂层的基本特性与表面完整性.结果表明,喷砂与喷丸前处理均可以在TC21钛合金表面引入残余压应力;HVOFWC-17Co涂层与钛合金基材结合紧密,涂层硬度显著高于钛合金的表面硬度,但涂层的次表层存在一定的残余拉应力.喷丸能够显著提高TC21钛合金的疲劳抗力,主要归因于喷丸引入了表面残余压应力;喷砂对钛合金疲劳抗力无显著影响,此归因于喷砂引入的表面残余压应力与造成的表面缺口效应的相互抵消.TC21钛合金喷砂后进行WC-17Co涂层处理,其疲劳抗力较基材显著降低,此归因于HVOF过程的热效应极大地松弛了喷砂表面的残余压应力,WC-17Co涂层韧性低、含孔洞型缺陷、且有残余拉应力,以及喷砂造成的钛合金表面缺口效应的综合作用.TC21合金喷丸后进行WC-17Co涂层处理,其疲劳抗力较基材有所降低,但降低的程度比喷砂预处理试样小这是因为喷丸处理改善疲劳抗力的有利作用部分弥补了WC-17Co涂层及HVOF高温效应对疲劳抗力的不利影响.  相似文献   

10.
多元合金高碳钢成分设计合适时,钢中存在多类型碳化物(M3C、M23C6、M7C3、M6C和MC)在常规的锻轧加工和退火工艺条件下,碳化物具有超细化特征.根据Cr-W-Mo-V高碳合全钢的碳化物在退火温度下的变化规律,应用Fe-Cr-W-Mo-V-Si-Mn-C系相平衡热力学计算,给出各温度下的钢中相结构、相成分和相变规律;并根据不同奥氏体化温度下的基体成分,推导合适的热处理工艺,并预测淬火硬度和回火硬度;借助在电子、原子层次上计算马氏体基体的原子间平均结合能,推断屈服强度和韧性指标.按照技术指标对机械性能的要求,对合金元素不同含量的钢的全部计算结果进行比较,最终确定钢的合适的化学成分.用上述方法研制了系列多类型超细碳化物中合金高碳钢和高合金高碳钢,实践结果表明,理论设计计算与少量的生产性实验结合可以达到预期的目的.  相似文献   

11.
页岩气储层纳微米孔隙、裂缝结构复杂,存在多尺度流动,气体的流动规律不同于常规气藏.本文对多孔介质内气体流动进行了研究,利用努森数划分不同尺度下气体流态,阐明了不同区域的流动机理和流动特征;综合考虑达西渗流、滑移扩散效应、井筒附近高速非达西效应等多重非线性效应,建立了页岩气储层多尺度统一流动模型.引入页岩气储层基质-压裂缝耦合两区模型,建立了页岩气储层压裂井定压条件下的两区压力分布和产能预测方程,并结合生产实例进行了参数敏感性分析.结果表明:随着滑移扩散系数、分形系数、压裂半径的增大,页岩气井产能增加,且增加幅度减小;考虑高速非达西效应较不考虑高速非达西效应时,页岩储层产能偏低,且高速非达西效应的影响小于滑移扩散对产能的影响.该模型为体积压裂页岩气产能预测及开发指标优化提供了理论依据.  相似文献   

12.
活性粉末混凝土(RPC)高温下易发生爆裂破坏,升温时RPC微细观孔隙结构与内部蒸汽压的变化与爆裂密切相关.本文采用压汞和SEM方法测试了素RPC200在室温至350°C七个温度水平下的微细观孔隙结构特征,分析了比孔体积、阀值孔径、最可几孔径等孔隙特征参数随温度变化的规律.通过自行研制的蒸汽压装置量测并分析了温升过程中素RPC200内部蒸汽压的变化机制.采用"薄壁球"模型定量分析了孔隙内部蒸汽压引发RPC爆裂的力学机理,并给出了球壁任意点的应力随饱和蒸汽压q(T)、球壁特征尺寸K变化的力学计算模型.研究表明:随温度升高,素RPC200的比孔体积、平均孔径、阈值孔径、最可几孔径等孔隙特征参数明显增大,200°C是阈值孔径和最可几孔径明显增加的门槛温度.单位质量的RPC孔隙体积增大主要来自于过渡孔与毛细孔的数量与体积增加.由于未形成有利于蒸发水逃逸的孔隙通道,快速达到饱和且难以有效释放的内部蒸汽压是导致RPC高温爆裂的直接原因.作者利用"薄壁球"模型给出了对爆裂起控制作用的壁厚范围.  相似文献   

13.
设计一种带有回流结构的矩阵式微射流热沉,采用实验和数值模拟方法对热沉性能进行了研究.在稳态条件下,获得了不同运行和结构参数时被冷却表面的温度分布、流体的速度场以及系统压损.结果表明:冲击距离对热沉性能影响较大,其值越小,平均努赛尔数越大,被冷却表面的平均温度越低,换热均匀性越好;被冷却表面平均温度与气体体积流量成反比;系统压损随着射流雷诺数的增大不断增大,雷诺数大于5500以后,压损急剧增加;换热均匀性与气体体积流量成反比,气体体积流量越大,换热均匀性越好.  相似文献   

14.
利用离子束辅助沉积方法(IBAD)在室温和400℃下制备出了单质的ZrB2和W薄膜以及不同调制周期和调制比的ZrB2/W纳米超晶格多层膜. 通过XRD, SEM, 表面轮廓仪及纳米力学测试系统研究了沉积温度和调制周期对纳米多层膜生长、织构、界面结构、机械性能的影响. 研究结果表明: 在室温条件下, 调制周期为13 nm时, 多层膜的硬度最高可达23.8 GPa, 而合成中提高沉积温度则有利于提高薄膜的机械性能. 在沉积温度约为400℃时合成的6.7 nm调制周期的ZrB2/W多层膜, 其硬度和弹性模量分别达到了32.1和399.1 GPa. 同时, 临界载荷也增大到42.8 mN, 且残余应力减小到约?0.7 GPa. 沉积温度的提高不仅使具有超晶格结构的ZrB2/W纳米多层膜界面发生原子扩散, 增强了沉积原子迁移率, 导致其真实的原子密度提高, 起到位错钉扎的作用, 同时晶粒尺度也被限制在纳米尺度, 这些均对提高薄膜的硬度起到作用.  相似文献   

15.
基于滑脱流动和努森扩散,分别以分子之间碰撞频率和分子与壁面碰撞频率占总碰撞频率的比值作为滑脱流动和努森扩散的权重系数,进行权重叠加,建立了页岩气复杂孔裂隙气体传输模型.该模型综合考虑了滑脱效应和真实气体效应,同时还分别考虑了截面类型(圆形和矩形)和形状对气体传输的影响.用公开发表的分子模拟数据验证模型.结果表明:(1)本文模型能够合理地描述页岩气复杂孔裂隙气体传输机理,包括连续流动、滑脱流动和过渡流动;(2)页岩气孔裂隙截面类型和形状影响气体传输能力,相同截面面积,圆形截面孔裂隙气体传输能力大于矩形截面孔裂隙气体传输能力,矩形截面孔裂隙气体传输能力随纵横比增大而减小;与截面类型相比,截面形状对气体传输能力的影响更大;(3)真实气体效应提高了气体传输能力,且这种影响随压力增大而增大,随孔裂隙尺度减小而增大;(4)与圆形截面相比,真实气体效应对矩形截面气体传导率影响更大,且随矩形截面纵横比增大而增大.本文模型能为页岩气准确数值模拟奠定一些理论基础.  相似文献   

16.
超塑性合金的结构敏感性很强,板材超塑性充模胀形的变形规律,不仅与应力状态有关,而且与加载路径有密切关系.超塑性自由胀形边界固定不受摩擦影响,因此,研究超塑性自由胀形的变形规律及其实验装置,是超塑性充模胀形成形的重要基础.采用纯净高压氩气源并用炉外加热系统加热后作为高温高压胀形加载介质,提高了热效率和试件加热的均匀性;采用光电转换非接触测量装置,避免了接触式顶杆对自由胀形件极点处附加应力和温度不均匀的影响;以筒形压边绝热炉内试件的温度和压力为依据,反馈调控温度和压力,提高了试件温度和压力的测控精度;在加载气路中通过准确测控步进电机转角实现调压,并控制电磁阀加载,显著增加了调控气压的响应特性.同时介绍了恒压加载、压力跃变加载以及附加背压的对向差压加载等几种自由胀形典型加载路径的实现步骤和方法,提供了测量超塑性自由胀形应变速率敏感性指数m值和探索提高超塑性自由胀形变形速度的新途径.  相似文献   

17.
钢筋混凝土柱名义轴压强度的尺寸效应源于:1)混凝土材料本身的非均质性及其力学非线性;2)钢筋/混凝土相互作用的高度复杂性.此外,长细比效应是影响钢筋混凝土柱最终破坏模式及其承载能力的另一重要因素.考虑混凝土材料细观结构的非均质性,及钢筋与混凝土间的非线性黏结滑移等因素,建立了钢筋混凝土柱轴心受压加载下力学行为研究的细观尺度力学分析模型.首先通过反演法确定了混凝土各细观组分的力学参数;进而对不同长细比钢筋混凝土柱在轴心受压加载下的破坏行为进行了数值模拟研究.结果表明:低长细比柱轴压加载下主要发生压剪破坏;而高长细比柱则发生屈曲失稳破坏,且由于端部效应的影响,破坏区域集中于柱的端部;长细比值小于9时,柱名义强度无明显变化,而大于9时,柱的屈曲强度迅速降低.  相似文献   

18.
钢筋混凝土梁-柱中节点核心区剪切破坏具有脆性特征,因而其抗剪强度可能存在尺寸效应.在已开展的物理试验研究基础上,采用数值试验方法扩展讨论了结构尺寸(节点最大截面尺寸为900 mm×900 mm)、轴压比和体积配箍率对钢筋混凝土梁-柱中节点破坏机制与失效模式的影响,并揭示了它们对剪切强度尺寸效应的影响规律.研究结果表明:(1)单调加载下,梁-柱中节点展现为核心区的脆性剪切破坏,名义剪切强度具有明显尺寸效应;(2)轴压比的增大可提高中节点的抗剪承载力,同时强化了剪切强度的尺寸效应;(3)体积配箍率的增大将增强节点的抗剪承载力,但会削弱剪切强度的尺寸效应.此外,经典的Ba?ant材料层次尺寸效应律可描述中节点剪切破坏的尺寸效应行为,但其无法描述轴压比与配箍率的定量影响.  相似文献   

19.
实测获得时速385 km高速列车空心车轴的动应力后,基于线弹性断裂力学和塑性致裂纹闭合效应,采用20节点等参退化奇异单元逼近裂纹前缘,建立考虑车轮、齿轮与车轴的压装配合约束,分别在轴肩、轮-轴压装区、轮-齿过渡区或卸荷槽、齿-轴压装区和轴身等5个部位插入垂直于车轴中心线的半椭圆形裂纹,对含缺陷车轴进行损伤容限分析和剩余寿命评估.研究发现,对于深度为2 mm的单个半椭圆形表面裂纹,含缺陷轮-轴卸荷槽、轴肩、轮-轴压装区和齿-轴压装区的可运行总寿命分别约为7.9×10~4,58.7×10~4,372.5×10~4和823.9×10~4 km,由于轴身中部的裂纹尖端为典型的压缩应力状态,判定其不扩展.分析结果为我国更高速度级空心车轴安全设计与可靠服役提供了重要的理论依据和科学支撑.  相似文献   

20.
微纳尺度下的水合物力学特性对厘清外荷载下孔隙中水合物与沉积物骨架相互作用机制以及揭示含水合物沉积物宏观力学行为机理具有重要意义.本文使用改装的低温原子力显微镜和直径5μm的二氧化硅(SiO2)微球胶体探针对四氢呋喃(THF)水合物进行了测试.在温度-30℃~-10℃和探针驱动速率0.5~20.0μm/s条件下,获得了微球压入THF水合物样品的深度、接触时间与接触力之间的关系以及微球与THF水合物样品间的黏附力.结果显示:压入过程中THF水合物产生了塑性变形,压入诱发的水合物相变可能进一步增强了塑性行为.在相同接触力作用下压入速率越小或温度越高, THF水合物的硬度越小且塑性行为越明显. THF水合物的屈服应力存在阈值(或者临界效应),这可能是导致含水合物沉积物应变硬化和应变软化现象的重要原因之一.基于修改后的幂率流变(PLR)黏弹性模型,低驱动速率和相对高温条件下THF水合物的黏弹性更显著. THF水合物表面的似液层和分解液在样品与微球间形成的液桥是两者间产生黏附力的主要原因,在温度-30℃~-10℃范围内黏附力约1.1~2.5μN,它主要与脱离前两者间的接触面积有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号