共查询到18条相似文献,搜索用时 46 毫秒
1.
在煤岩识别的研究中采用了基于结构风险最小化的支持向量机,介绍了支持向量机的煤岩界面识别原理,提出一种基于支持向量机的煤岩界面识别方法。 相似文献
2.
基于小波包和支持向量机的传感器故障诊断方法 总被引:2,自引:0,他引:2
针对自确认压力传感器的故障诊断问题,提出了一种基于小波包变换和支持向量机的传感器故障诊断方法。该方法对传感器输出信号进行三层小波包分解,提取各个节点的小波包系数,对每个节点的小波包系数通过一定的削减算法增强故障特征,然后利用重构的时域信号计算各个节点的能量以及整个信号的削减比作为特征向量,以此作为输入来建立支持向量多分类机,判断传感器的故障类型。对自确认压力传感器、温度和流量传感器的故障诊断结果表明,该方法能有效地应用于传感器的故障诊断中。 相似文献
3.
提出了基于固有模态函数奇异值分解和支持向量机的虹膜识别方法.用一维经验模式分解对按行展开的虹膜数据进行分解,将得到的若于个IMF形成初始矩阵,然后对该矩阵进行奇异值分解,提取其奇异值作为虹膜特征向量输入支持向量机进行分类识别.与传统的Gabor小波特征提取方法比较,本文方法解决了滤波器参数繁杂同题且在编码长度和时间方面有明显的改进.试验结果表明,本文方法能有效地应用于身份鉴别系统中. 相似文献
4.
5.
提出了结合随机振动响应互相关函数、小波包分解和支持向量机(support vector machine,SVM)的结构损伤识别方法,计算了相邻测点响应的互相关函数幅值.采用小波包对得到的幅值进行分解,得到各个频带上的总能量;利用各频带上能量值存在的差异性作为输入到分类器的特征向量,训练SVM模型并对结构的损伤进行识别.应用该方法对Benchmark模型结构进行损伤判别,实验通过对比其他基于SVM的方法,结果表明该方法具有较好的识别精度. 相似文献
6.
7.
针对逆变器功率元件经常出现的开路故障,提出一种基于小波包分解和支持向量机的故障诊断方法。利用小波包对逆变器输入电流进行分解,获得电流信号的各层细节系数、能量以及偏移量。对分解得来的参数进行相应的归一化处理,得到逆变器功率开关元件不同故障状态下的故障特征。将其各自作为多分类支持向量机的输入量来训练多分类支持向量机。通过模拟实验证明,该方法在诊断和定位故障上具有较高精度和效率。 相似文献
8.
贾志先 《山西大学学报(自然科学版)》2011,34(3):351-356
通常情况下,很难用试卷扫描图像的像素灰度值来直接区分空白试卷和非空白试卷.应用支持向量机方法可以有效地识别空白试卷.建立了两个二维线性可分的支持向量机,一个是以图像像素灰度值列向量的标准差的最大值和行向量的标准差的最大值为特征的支持向量机1,另外一个是以图像像素灰度值列向量的标准差的标准差和行向量的标准差的标准差为特征的支持向量机2.在实际应用中,大部分空白试卷应用支持向量机1来识别,对个别的位于支持向量机1的分类间隔(margin)内的试卷样本,支持向量机1有可能出现识别错误,在这种情况下,应用支持向量机2作进一步识别.此方法在HSK空白试卷识别中取得了很好的结果. 相似文献
9.
提出了将小波变换结合灰度共生矩阵法,以用于提取目标样本图像特征信息.建立了基于支持向量机方法的分类器,以对高分辨率遥感图像进行目标识别.实验结果表明:该方法快速、高效且具备一定的鲁棒性. 相似文献
10.
基于支持向量机的分级调制识别方法 总被引:2,自引:0,他引:2
目前大部分调制识别方法存在计算量过大和分类器训练困难等问题.针对这一现状,提出了一种基于支持向量机(SVM)的分级调制识别新方法.将接收信号的累积量和瞬时频率统计量作为分类特征参数,并利用支持向量机作为分类器对其进行分级调制分类.该方法相比其他非分级调制识别方法具有较低的计算复杂度和较快的分类器训练速度,并且对于载波频率偏移、相位抖动以及Gauss噪声均具有良好的鲁棒性.计算机仿真表明,针对ASK、FSK、PSK、QAM等11种数字调制信号,当噪声采用Gauss白噪声,并且信噪比≥5 dB时,正确识别率高于95%. 相似文献
11.
基于Gabor小波和支持向量机的人脸识别 总被引:1,自引:1,他引:1
提出一种将Gabor小波和支持向量机相结合的人脸识别算法。运用AdaBoost算法在复杂背景图像中快速准确地检测出人脸部分,进而用Gabor小波提取归一化人脸图像的特征。最后采用支持向量机进行人脸的分类识别。在ORL人脸库和CAS-PEAL-R1人脸库中对算法进行了测试,结果表明该算法识别率较高。 相似文献
12.
基于小波变换和支持向量机的人脸识别研究 总被引:1,自引:0,他引:1
人脸识别是机器视觉、模式识别等领域的研究热点,具有广阔的应用前景.文章利用小波变换对人脸图像进行预处理,减少表情变化对人脸识别的影响;根据PCA法,将处理后的人脸图像映射到相互正交的特征脸坐标轴上,实现了特征降维;利用支持向量机分类模型对人脸图像在特征脸坐标轴上的投影向量进行识别,并在ORL和Yale人脸库上进行实验,... 相似文献
13.
支持向量机(Support Vector Machines简称SVMs)是基于统计学习理论的一种新的模式识别技术,它不仅结构简单,而且技术性能尤其是泛化能力明显提高。介绍了支持向量机为理论基础的通信信号调制识别方法。计算机仿真结果证实此方法的可行性。 相似文献
14.
基于支持向量机的模式识别方法 总被引:4,自引:0,他引:4
介绍了由Vapnik等人提出的统计学习理论和由此发展的支持向量机,分析了其应用前景和研究方向,两个算例表明,在模式识别领域中,采用支持向量机这一新方法,具有其他传统方法不可比拟的优势。 相似文献
15.
基于小波变换和支持向量机的音频分类 总被引:1,自引:0,他引:1
音频特征提取是音频分类的基础,而音频分类又是基于内容的音频检索的关键。使用小波变换和支持向量机的方法对音频进行分类。研究了小波变换域的音频特征提取,分析了这些特征在小波变换域中的意义。把得到的特征向量作为支持向量机的输入,把音频分成纯语音、带背景音乐的语音、音乐、环境音4种类型。实验结果表明,基于小波域的特征计算简单、能够较好地区分不同的音频类型,得到较高的分类精度。 相似文献
16.
孟娇茹 《黑龙江科技学院学报》2009,19(1):50-53
针对目前航空发动机孔探检测不能对损伤类型自动识别现状,将支持向量机与孔探检测技术相结合,提出基于支持向量机(SVM)的损伤图像识别方法。该方法将损伤图像进行二值化分割,利用链码跟踪及灰度共生矩阵分别提取损伤区域的形状特征和纹理特征,组成多维特征向量,输入支持向量机进行分类识别。分类器设计阶段,组建性能优越的二叉树支持向量机以减少训练样本,提高分类效率。CFM56发动机实验结果表明:该方法的识别性能明显优于传统SVM多分类器和BP神经网络方法。 相似文献
17.
为了改善ENSO的预测效果,基于Nino综合区的海温距平时间序列,采用小波分解和最小二乘支持向量机结合的方法,引入多步递阶预测的思想,建立ENSO的预测模型.试验结果表明:基于小波分解和最小二乘支持向量机结合的多步预测方法,可以有效提高ENSO的预报精度.同时,该模型具有同时得到不同时效的预测结果,建模方便,计算效率高... 相似文献
18.
针对大气污染物浓度时间序列有一定的年变化趋势,提出了大气污染物浓度的小波分析及支持向量机时间序列预测模型。应用小波分解和重构对大气污染物浓度进行年变化趋势分析,在此基础上将大气污染物浓度序列划分为若干时段。各时段分别独立应用支持向量机进行大气污染物浓度预测,各时段均使用ν-支持向量回归机(ν-SVR)算法和径向基函数。预测结果表明,所提出的预测方法应用于大气污染物浓度时间序列预测有较高的预测精度和良好的推广能力,而且明显优于一般的支持向量机模型。 相似文献