首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
纳米粒子和PVA纤维增强水泥基复合材料抗折性能研究   总被引:1,自引:1,他引:0  
通过抗折试验和抗折试验后小立方体抗压强度试验,探讨了纳米粒子掺量、PVA纤维掺量和石英砂粒径对水泥基复合材料抗折性能的影响。结果表明,纳米粒子掺量、PVA纤维体积掺量和石英砂粒径对水泥基复合材料抗折强度和抗折试验后小立方体抗压强度有较大影响。PVA纤维水泥基复合材料的抗折强度和小立方体抗压强度随着纳米SiO2掺量增加呈先增大后减小的趋势,当纳米SiO2掺量达到1.5%和1.0%时,抗折强度和抗压强度分别达到最大值;随着纤维体积掺量的增大,掺纳米SiO2水泥基复合材料抗折强度和小立方体抗压强度逐渐增大,但当PVA纤维体积掺量超过0.6%时,小立方体抗压强度有逐渐降低的趋势;随着石英砂粒径的减小,抗折强度和小立方体抗压强度逐渐降低,采用粒径a石英砂配制的水泥基复合材料具有更高的抗折强度和小立方体抗压强度。  相似文献   

2.
通过抗折试验和抗折试验后小立方体抗压强度试验,探讨了纳米粒子掺量、聚乙烯醇(PVA)纤维掺量和石英砂粒径对水泥基复合材料抗折性能的影响。结果表明,纳米粒子掺量、PVA纤维体积掺量和石英砂粒径对水泥基复合材料抗折强度和抗折试验后小立方体抗压强度有较大影响。PVA纤维水泥基复合材料的抗折强度和小立方体抗压强度随着纳米Si O_2掺量增加呈先增大后减小的趋势,当纳米Si O_2掺量达到1.5%和1.0%时,抗折强度和抗压强度分别达到最大值;随着纤维体积掺量的增大,掺纳米Si O_2水泥基复合材料抗折强度和小立方体抗压强度逐渐增大,但当PVA纤维体积掺量超过0.6%时,小立方体抗压强度有逐渐降低的趋势;随着石英砂粒径的减小,抗折强度和小立方体抗压强度逐渐降低,采用粒径a石英砂配制的水泥基复合材料具有更高的抗折强度和小立方体抗压强度。  相似文献   

3.
通过水性环氧树脂改性水泥基彩色砂浆,制备一种力学性能优异且经济的彩色路面铺装材料,并通过抗折强度试验、抗压强度试验、粘结强度试验、抗滑性能试验、色彩耐久性试验研究了复合材料的最佳配合比和路用性能,通过SEM试验分析了水性环氧树脂和粉煤灰对水泥水化产物的影响。研究结果表明:粉煤灰掺量10%,水性环氧树脂掺量10%,改性砂浆力学性能最优;改性砂浆的BPN基本保持在55~80,抗滑性能良好;水性环氧树脂的掺入增加了水泥砂浆的粘结性、耐酸腐蚀性和后期抗折强度,但降低了其抗压强度;适量粉煤灰可以增加水泥砂浆的后期抗折和抗压强度。  相似文献   

4.
为了提高大掺量橡胶颗粒砂浆的力学强度,推进橡胶砂浆在实际工程中的应用,试验采用外掺纳米SiO_2的方法对橡胶砂浆进行改性,研究不同掺量纳米SiO_2对橡胶砂浆的孔隙率、密度、抗压强度与抗折强度以及试块的干缩和自收缩性能的影响。试验结果表明,纳米SiO_2的加入能够有效降低橡胶砂浆孔隙率,提高其密度及抗压强度与抗折强度,但在纳米SiO_2掺量小于3%时,强度提升幅度随纳米SiO_2掺量增加明显增加,在纳米SiO_2掺量大于3%时,其强度增长幅度变缓。橡胶等体积替代30%砂的条件下,纳米SiO_2最佳掺量为水泥质量的3%;纳米SiO_2在提高橡胶砂浆抗压与抗折强度的同时也加大了试块的收缩,增大了砂浆的开裂风险,故在今后的研究中仍需进一步综合考量。  相似文献   

5.
为充分利用磷渣和粉煤灰两种工业废渣生产高性能胶凝材料,研究了不同磷渣/粉煤灰配合比的碱-磷渣-粉煤灰胶凝材料的性能.结果表明:碱-磷渣-粉煤灰胶凝材料的凝结时间正常,在掺量为0~30%(质量分数)范围内,随着粉煤灰掺量的增加,碱-磷渣-粉煤灰的凝结时间略有延长.与普通硅酸盐水泥相比,碱-磷渣胶凝材料的抗压强度较高而抗折强度相对较低;掺加粉煤灰后碱-磷渣胶凝材料的抗压强度降低,但抗折强度提高.碱-磷渣胶凝材料的抗冻性和耐蚀性均优于普通硅酸盐水泥,但其干缩较大,用部分粉煤灰取代磷渣粉可一定程度减小干缩.  相似文献   

6.
采用超声波分散方式将纳米CaCO_3掺入水泥基材料,研究了不同掺量纳米CaCO_3对水泥基材料性能与结构的影响,并利用X射线衍射和扫描电镜分析其影响机理.结果表明:掺入纳米CaCO_3后,水泥基材料流动度降低,浆体表观密度增大,抗折和抗压强度提高.纳米CaCO_3掺量为1.5%(质量分数)时,对水泥基材料的力学性能提高最为显著,纳米CaCO_3掺量过多则不利于强度发展.纳米CaCO_3的掺入会加速水泥的水化,早期使水化产物Ca(OH)_2等增加;纳米CaCO_3改善了界面结构和水泥石结构,使水泥基材料的结构变得更加均匀密实.结果显示纳米CaCO_3掺入后对水泥基材料的力学性能与结构有利.  相似文献   

7.
针对传统水泥基材料存在的强度较低、功能单一、成本偏高、工艺复杂、收缩较大等问题,以多种活性粉末为基础材料,通过单因素、正交试验及极差分析方法,确定了以强度性能为指标的高强水泥基材料质量配合比为水泥∶FA∶硅粉∶砂∶PP∶减水剂∶UEA:硅溶胶∶SBR∶水=100∶12∶6∶46.75∶0.08∶1.36∶3∶0.7∶1.3∶28.5,28d抗折/抗压强度达到12.4MPa/110.06MPa。在此基础上,通过干缩性能试验、DSC、SEM、XRD等方法,对高强水泥基材料性能进行了进一步分析。研究结果表明,掺入UEA的28d干缩率为0.176%,比0%UEA掺量的干缩值减少了0.077%;高强水泥基材料二次水化程度较低,但微观上堆积良好、结构致密均匀的超细粉胶凝体系保证了其高强、低脆的性能。  相似文献   

8.
碱磷渣胶凝材料早期强度较低,不利于实现快速修补,通过在碱磷渣材料中掺入适量的石墨尾矿粉和普通硅酸盐水泥进行快硬早强磷渣基胶凝材料的研制.结果表明,掺入10%的普通硅酸盐水泥(占胶凝材料总质量的百分比,下同)和15%的石墨尾矿粉时,可有效提高碱磷渣胶凝材料的早期强度.当硅酸钠掺量为5%(以Na_2O计)时,所开发的快硬早强磷渣基胶凝材料胶砂试件的3d抗压强度27.3MPa、3d抗折强度4.1MPa,28d抗压强度56.8MPa、28d抗折强度8.3MPa,符合GB175-2007对普通硅酸盐水泥P.O42.5R的强度要求.运用XRD、SEM、综合热分析等微观测试技术研究了快硬早强磷渣基胶凝材料的水化硬化和微观结构.  相似文献   

9.
目的研究不同原材料掺量对复合胶凝材料试件强度的影响,选择最佳配合比制备一种新型的复合胶凝材料取代普通硅酸盐水泥.方法根据不同配合比参数,制备相应的复合胶凝材料试件,测试其抗折强度和抗压强度,研究轻烧镁粉掺量、硫酸镁溶液掺量、硫酸铝溶液掺量以及磷酸掺量对试件强度的影响.结果硫酸镁溶液质量分数不变时,试件的强度随轻烧镁粉掺量的增加而提高.轻烧镁粉与硫酸镁的质量比固定时,试件的强度随硫酸镁溶液浓度的降低而减小,且m(Mg O)∶m(Mg SO4)固定值为4.6时,试件的强度取得最大值.m(Mg O)∶m(Mg SO4)∶m(H2O)为4.6∶1∶3.7,硫酸铝溶液掺量、磷酸掺量分别为轻烧镁粉掺量的1.5%、1.8%时,复合胶凝材料试件28 d时的抗折强度、抗压强度取得最大值,分别为6.8 MPa、51.4 M Pa.结论制备的镁质粉煤灰复合胶凝材料的强度可达到同等42.5级普通硅酸盐水泥的强度要求.  相似文献   

10.
针对普通水泥基材料存在早期强度低、抗变形能力弱等问题,通过纳米硅溶胶对水泥基材料进行改性,采用电液伺服万能试验机、X射线衍射及扫描电镜等手段对纳米硅溶胶改性不同水灰比水泥基材料的流动性、结石率、单轴抗压强度、弹性模量、水化产物及微观形貌进行研究。结果表明:硅溶胶掺量在0.5%以内、水灰比小于1.0时可显著提高水泥浆液的流动性,最大提高20.24%;结石率随着纳米硅溶胶掺量的增加而增大,且硅溶胶对水灰比大于0.7浆液的结石率提高明显,最大提高24.49%;当硅溶胶掺量为2%时,结石体的抗压强度增幅最大且随着养护龄期的增加,硅溶胶对试样强度的增幅效果逐渐减弱;纳米硅溶胶的掺入促进水泥基早期的水化反应,与水化产物反应生成水化硅酸钙凝胶(C—S—H)并使微观形貌更加致密,使结石体的早期抗压强度及弹性模量显著提高;纳米硅溶胶通过缩短诱导期以及在颗粒空隙中为C—S—H提供成核位点促进水化反应,提高水泥基材料性能。  相似文献   

11.
利用酸性、中性和碱性硅溶胶制备改性海工水泥,研究它们对海工水泥的强度的影响,并通过FTIR、XRD等手段研究了其水化机理。同时分析了碱性硅溶胶对海工水泥胶砂抗氯离子渗透性的影响。碱性硅溶胶对海工胶凝材料的增强效果明显高于酸性和中性硅溶胶的,尤其是早期强度,在3 d龄期时,掺3%碱性硅溶胶抗折、抗压强度增幅达到6.3%和23.7%。此外,碱性硅溶胶还能大幅提高海工胶凝材料的抗氯离子渗透性能,在掺量3%时,增幅达48.9%。在水化早期,3种硅溶胶中的纳米Si O2都能够起到消耗Ca(OH)2促进水泥水化的作用,而碱性硅溶胶的效果最佳。  相似文献   

12.
研究了不同掺量下可再分散性乳胶粉对砂浆抗压强度、抗折强度的影响。试验结果表明:随着乳胶粉掺量的增加,砂浆的抗折强度较普通砂浆有大幅度提高,但抗压强度随之降低;可再分散性乳胶粉可大幅度提高砂浆的综合性能,适宜掺量为胶凝材料重量的2%-3%。  相似文献   

13.
本文研究了硅灰石掺量对白色硅酸盐水泥标准稠度、凝结时间、水化各龄期强度等的影响,结果表明:随着硅灰石掺量的增加,水泥标准稠度略有增加,初凝时间延长约1小时,终凝时间延长0.5至1小时,均在国标规定的凝结时间范围内,水化各龄期抗折、抗压强度均随掺量的增加而降低,抗折强度的下降幅度大大小于同龄期抗压强度的下降幅度;当掺量小于10%时,对白水泥的物理力学性能影响不大。  相似文献   

14.
朱锦良  董功 《科技信息》2011,(19):I0093-I0094,I0127
研究了复掺粉煤灰与矿粉对高性能混凝土力学性能的影响,结果表明:粉煤灰与矿粉比例为2:1、掺量为20%~30%时可以有效提高高强混凝土的力学性能。在此条件下相比于基准混凝土,7d抗压强度提高14.7%,抗折强度提高10.2%,静弹性模量提高9.9%;28d抗压强度提高19.2%,抗折强度提高5.3%,静弹性模量提高7.4%。采用压汞仪测量不同胶凝材料体系的孔隙率,分析了复掺粉煤灰和矿粉对高强混凝土力学性能的影响机理,认为不同胶凝材料的相互填充效应是主要影响因素。  相似文献   

15.
为了使水泥-水玻璃注浆材料在注浆中得到更广泛的应用,通过室内配比试验和扫描电镜分析对5%膨润土掺量下水泥-水玻璃体积比和粉煤灰掺量对水泥-水玻璃(C-S)浆液性质的影响进行研究,并开展现场试验对该改性浆液的防渗性能进行了研究。结果表明:(1)改性C-S双液的凝胶时间有所延长,且凝胶时间随着C-S体积比的增大而缩短、粉煤灰掺量的增大而延长;(2)浆液结石体的抗压强度和抗折强度都随C-S体积比的增大都呈现先增大后减小的趋势并在体积比约为2时达到最大,浆液结石体的抗压强度随粉煤灰掺量的增大而降低,结石体7 d抗折强度随着粉煤灰掺量的增加先增加后减小,试验条件下,粉煤灰掺量为25%取得最大抗折强度;(3)通过扫描电镜对结石体微观结构分析得出,粉煤灰掺量为25%、C-S体积比为2的配比下水泥的水化反应最充分,粉煤灰的微集料反应发挥最佳;(4)通过现场防渗试验验证了研发浆液材料的防渗性能满足规范要求。改性C-S浆液较好地结合了几种材料的优点,建议采用的材料配比为25%粉煤灰、5%膨润土、70%水泥,C-S体积比为2。  相似文献   

16.
本文研究了α-半水石膏的掺量对建筑石膏标准稠度用水量、凝结时间、强度等宏观性能的影响,并且采用SEM和压汞法分析了复合胶凝材料的水化物的形貌和孔结构。结果表明:当α-半水石膏掺量从0%增加至20%时,标准稠度用水量降低了5.6%,初、终凝时间分别延长了2 min和7.5 min,抗折、抗压强度分别提高了58.3%和71.9%。随着α-半水石膏掺量的提升,针棒状水化产物数量减少,短柱状水化产物数量增加,石膏硬化体孔隙率降低,孔径趋于细化。  相似文献   

17.
宁毅  李文凯 《河南科学》2020,38(7):1089-1093
混凝土材料在工程中被广泛应用,但其本身的脆性很大程度上限制它的应用领域,高性能聚合物改性混凝土具备较好的抗折、抗压强度以及耐腐蚀性.本研究聚合物改性剂是由AB-EP-4型环氧树脂、AB-HGA型环氧固化剂按照3∶2的质量比例掺配而成,制作聚灰比分别为0%、3%、6%、9%、12%的混凝土试件,分析聚合物改性水泥混凝土的力学性能和耐久性能.通过抗压试验、抗拉试验、抗折试验以及动弹性模量等力学性能试验研究聚合物掺量对普通混凝土力学性能的影响,与普通混凝土相比,聚合物改性水泥混凝土抗压强度没有改善,但其抗拉强度及抗折强度得到增强,弹性模量下降.当聚灰比为6%时,混凝土的力学性能得到较好改善;改性混凝土抗冻等级增加,质量损失降低;当聚合物掺量为9%~12%时,对混凝土的抗冻性能增强效果最优.  相似文献   

18.
矿渣—粉煤灰基高性能混凝土专用胶凝材料   总被引:2,自引:1,他引:1  
通过优化配比组分、粒级设计和使用外加剂,制备出一种高掺量矿渣、粉煤灰且使用水泥熟料较少的矿渣--粉煤灰基高性能混凝土专用胶凝材料.研究了物料粉磨方式、石膏掺量、矿渣与粉煤灰的掺量及比例对复合高性能胶凝材料体系强度的影响,并通过X射线衍射(XRD)和扫描电镜(SEM)微观分析手段观察其微观结构和水化产物,阐明了复合胶凝材料活性与级配协同优化效应.复合胶凝材料胶砂水胶比为0.36时具有较好的流动度,胶砂试块养护28d抗压强度可以达到58.9MPa,抗折强度达到14.2MPa,并具有良好的抗硫酸盐侵蚀性能,配制的混凝土具有良好的抗碳化性能.  相似文献   

19.
为探索粉煤灰对水泥基材料力学性能的影响,采用二次回归正交设计的方法研究粉煤灰水泥基材料3d、28d的抗压强度和抗折强度,探讨了各因素对水泥基材料力学性能的影响规律。研究表明:采用二次回归正交设计建立的数学模型能够准确的描述水胶比、胶砂比、粉煤灰掺量与水泥基材料各龄期抗压强度、抗折强度相互之间的内在规律。  相似文献   

20.
以废轮胎橡胶粉作为改性材料,研究了橡胶粉含量和细度对高强混凝土密度、坍落度、抗压强度、劈裂抗拉强度和抗折强度的影响。研究表明:随着橡胶粉掺量的增加,橡胶粉高强混凝土材料的密度、坍落度、强度会下降。橡胶粉的粒径对高强混凝土的抗压强度、抗折强度影响不明显,但劈裂抗拉强度就随着橡胶粉粒径的增大而下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号