首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 73 毫秒
1.
以车用压气机为研究对象,基于CFD稳态的RANS方程湍流模拟计算压气机的流场特性和宽频噪声,结果表明叶轮区域是压气机的主要噪声源.基于大涡模拟(LES)和Ffowcs-WilliamsHawkings(FW-H)方程的声比拟方法,以压气机叶轮为声源对压气机离散噪声进行预测分析.结果表明该压气机主要噪声源在叶轮区域.以压气机叶轮为声源进行仿真计算所得声压与实验值大体趋势相同,仿真值比实验值略高,误差在10%以内,表明该仿真计算方法可行,对进一步研究压气机噪声控制具有参考价值.  相似文献   

2.
基于大涡模拟方法,采用CFX软件对某型通海阀的噪声进行数值模拟分析。选择大涡模拟中的WALE亚格子模型,运用前处理软件ICEM对通海阀三维模型进行网格划分,根据大涡模拟要求和实际使用情况设置边界条件。计算结果表明,通海阀低频噪声声能较大,高频部分所占比重较小,这与实际相符,验证了数值计算的准确性;相对于工业企业环境噪声标准,该阀门噪声的声压级略偏大。  相似文献   

3.
基于大涡模拟(LES)方法和Lighthill声学类比方法,对一倒T型开孔进行流场及流激噪声进行数值模拟,计算所得结果与公开发表文献上的数值及实验结果吻合良好,验证了基于LES的流噪声数值模拟方法的可行性.在此基础上,对某三维开孔潜体(原型)及其改型进行了流噪声数值模拟,对潜体内腔流场及其噪声辐射结果进行分析,从数值模拟的角度验证了改型潜体在阻力和噪声性能上都要优于原型潜体.
  相似文献   

4.
为了揭示声压与流动引起的压力脉动之间的区别与联系,以及声学积分面对噪声计算的影响,以斜流中的PPTC(potsdam propeller test case)桨为研究对象,基于均质混合流模型和Zwart-Gerber-Belamri空化模型及FW-H方程,对螺旋桨空化噪声进行了计算及指向性分析;之后进行了压力脉动流动分...  相似文献   

5.
针对不同直径二维圆柱的风噪声,采用大涡模拟和FW-H方程声类比的方法进行计算,将基准模型的计算结果与他人计算和实验结果进行对比,分析不同直径二维圆柱的远场声场特征.研究表明:基准模型的数值模拟结果与实验值非常接近,说明了本文计算方法的适用性;远场采样点的声压级频谱峰值频率随着圆柱直径的增大而减小,同根据斯特罗哈数为0.2的理论值计算的峰值涡脱频率接近;10~38mm直径工况远场采样点的总声压级随着直径的增大基本上呈线性增加趋势;总声压级和A计权总声压级随雷诺数的增加,呈现在亚临界区内增加、而在接近临界区时减小的变化趋势.  相似文献   

6.
针对内外涵分开双喷流的噪声问题进行了仿真计算研究。计算采用"CFD+CAA"的混合方法,流场计算采用大涡模拟(LES),捕捉流场中的主要噪声源;声场计算采用FW-H(Ffowcs WilliamsHawkings equation)方程积分得到远场噪声信息。为了降低喷流噪声,在内涵安装了锯齿形喷嘴。安装锯齿形喷嘴后,内外涵气流掺混增强,增加了内涵的喷流有效面积,使得中低频噪声降低,高频噪声略有增加,总体降噪量3~5 d B。喷流噪声具有明显的指向性,喷流下游噪声明显高于上游,总体指向喷流下游。  相似文献   

7.
以主叶片及分流叶片叶顶间隙相同的离心压气机为原型,采用数值方法,对比分析了增大主叶片叶顶间隙同时减小分流叶片叶顶间隙,以及减小主叶片叶顶间隙的同时增加分流叶片叶顶间隙这两种间隙非谐方案对于离心压气机性能的影响.在此基础上,基于离心压气机内部非定常流动参数,结合FW-H方程进行了离心压气机内部离散噪声分析,研究了间隙非谐对离心压气机离散噪声的影响.结果表明,适当减小主叶片叶顶间隙,增大分流叶片叶顶间隙,可以在保持压气机性能的基础上有效降低压气机离散气动噪声.   相似文献   

8.
基于大涡模拟(large eddy simulation, LES)和FWH声比拟方法,仿真计算了波纹管气动噪声的三维模型,结果与理论值和实验测量相符合。对波纹深度进行了参数化计算分析,结果表明:(1)空气流过波纹管时,在波纹节点处绝对压力出现极大值,在波纹腹点处出现极小值;(2)随着轴向距离的增加,气动噪声的表面声压时均值增大;(3)随着波纹管波纹深度的增大,声压级和功率谱密度均值呈现先增大后减小的趋势。其数值计算方法对管道噪声处理有潜在应用价值。  相似文献   

9.
汽车空调气动噪声数值与试验研究   总被引:1,自引:0,他引:1  
通过数值仿真和台架试验相结合的方法开展某车型空调系统气动噪声研究.研究发现,精细网格和大涡模拟方法能够获得高精度的出风口风量分配结果,它们与试验最大偏差为4.35%,最小偏差为0.93%.与此同时,空间流线的紊乱和当地速度的大小直接影响其表面总声压级的大小,对于计算的空调系统,风机是主要噪声源,改善风机流动分离,降低风机噪声是空调系统降噪的关键.可穿透面的声辐射方法有效地考虑到表面压力脉动的偶极子噪声和空间涡流的四极子噪声,是汽车空调气动噪声计算中声辐射的有效处理方法.利用该方法得到的测点总声压级与试验值更加接近,约相差2dBA,频谱变化趋势和数值基本一致,推荐作为后续空调气动噪声仿真的声辐射处理方法.  相似文献   

10.
乘用车风噪声模拟研究   总被引:8,自引:0,他引:8  
对某乘用车风噪声进行了模拟研究.首先,采用大涡模拟模型(LES)计算了乘用车的瞬态外流场,然后,应用Lighthill-Curle声学模拟理论,以后视镜及A柱区域为噪声源,预测了车外场点的噪声特性,模拟值与测量值在高频范围内比较符合.根据流场和声学模拟结果,分析了后视镜的声学缺陷.通过取消原后视镜上的凹槽,增加后视镜与A柱之间的连接距离,减小后视镜迎风面积和构形等手段,对后视镜的声学敏感区域进行了修改.最后,对修改后的模型进行了噪声测量,试验结果显示,模型修改后风噪声有显著降低.  相似文献   

11.
分析了DQX系列旋转式压缩机的振动和噪声产生的机理 ,指出系统的噪声并非由于压缩机或壳体的共振引起的 ,而是非共振激励下的壳体等部件的振动声辐射引起的 ,这为进一步对压缩机噪声和振动进行控制提供了依据 .  相似文献   

12.
汤永光 《科学技术与工程》2011,11(10):2153-2157
为考虑非紧致固体边界散射作用的影响,通过声模拟与边界元相结合的声压修正方法预测流体流动引起的噪声,将所分析的问题降低一维,能够满足无限远处边界条件。频率不是很高时,四极子源辐射的声强度远小于边界散射声强度,可以忽略耗时的四极子源项体积积分计算。通过傅立叶变换在频域求解声压方程,避免了繁琐的时间延迟计算。  相似文献   

13.
汽车空调出风管道气动噪声分析与控制   总被引:1,自引:0,他引:1  
通过耦合CFD(Computational Fluid Dynamics)与专业声学代码SYSNOISE求解汽车空调管道气动噪声,即利用LES(Large Eddy Simulation)湍流模型对空调管道的瞬态流场进行求解获得噪声源项,然后将噪声源项作为边界条件导入SYSNOISE来计算噪声的传播.根据流场分析与声场分析结果对空调管道的结构提出了两种改型方案,并对改型前后的空调系统噪声进行了测试.测试结果表明相比原始空调系统,两种方案都能有效降低噪声且方案二效果更好,驾驶员附近的噪声最大降幅达4.5 dB.  相似文献   

14.
采用大涡模拟方法,研究在翼型不同位置添加脊状结构对翼型流场及气动性能的影响,讨论了添加脊状结构后翼型流场的流动特性和涡结构特性。研究发现:1)在α=6°攻角条件下,无论riblet-Q翼型模型或riblet-H翼型模型均可改善边界层分离情况,但riblet- H翼型模型表现出更好的控制效果。2)后段布置脊状结构能够有效推迟翼型边界层分离点,抑制边界层大涡形成,控制分离涡的发展和脱落。3)riblet-H翼型模型使翼型的升力系数增大,同时也使其阻力系数降低,升阻比较原翼型有了较大提高。  相似文献   

15.
旋叶式汽车空调压缩机的噪声源识别   总被引:2,自引:0,他引:2  
运用分别运行法、频谱法和声强法分析了JSS-96系列旋叶式汽车空调压缩机噪声的产生机理,指出该型号压缩机的噪声源主要是由电机噪声和排气口的气体压力脉动引起的周期性脉动噪声以及进气噪声,其中电机噪声和进排气脉动噪声对整个压缩机的噪声贡献最大,为进一步控制压缩机的噪声提供了依据.  相似文献   

16.
压气机特性数据是通过大量实验而获取的,结合发动机调节规律对压气机特性数据进行计算,可获得整台发动机的特性,从而缩短发动机研制周期。该文根据某研制中的压气机特性数据,使用坐标数值方法对航空发动机特性进行了计算研究,且基于VB语言开发了相关的程序,实现了高压压气机和低压压气机共同工作线的计算、绘制以及发动机的特性的计算。  相似文献   

17.
高速列车受电弓气动噪声特性分析   总被引:1,自引:0,他引:1  
以某高速列车受电弓为研究对象,探讨其在350km/h速度下的气动噪声特性。采用延迟脱体涡模拟(DDES)和声学有限元(FEM)相结合的方法,分析带导流罩受电弓在升起和下降状态下,近场和远场气动噪声空间分布规律和频谱特性,研究流场计算时不同建模方式对诱发噪声幅值和指向性的影响以及壁板的反射和散射作用对噪声频谱特性的影响。结果表明:1)在本文选取的受电弓外形和开口方向下,降弓和导流罩诱发噪声略大于升弓和导流罩诱发噪声;2)导流罩在低于300Hz的低频区诱发噪声比例较大,而受电弓在300Hz后诱发噪声影响较大;导流罩诱发噪声在升弓情形时所占比例相对较大;3)在指向性上,导流罩诱发噪声在受电弓前部贡献较大,受电弓诱发噪声在后部区域贡献较大;在列车正上方区域,弓体诱发噪声大于导流罩诱发噪声,是主要的气动噪声源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号