首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 250 毫秒
1.
为了理解既有隧道在盾构下穿影响下的受力变形规律,提出一种既有隧道与土体相互作用解析方法。采用Loganathan解获得盾构下穿引起周围土体自由位移场;随后,将既有隧道假定成放置在Vlazov地基上的欧拉梁,考虑既有隧道两侧侧向土体作用,基于既有隧道边界条件及Taylor级数展开获得隧道变形响应解析解。通过与上海工程和离心机实测数据比较:该方法与实测数据较为接近,证明该方法的可靠性;与该方法退化解析解比较,该方法计算结果更符合实测数据,随后对相关参数进行分析。参数研究表明:随着新旧隧道竖向间距的增大,既有隧道受到盾构开挖的影响逐渐减小;增大地层损失率会引起既有隧道位移及弯矩线性增大;提高既有隧道抗弯刚度能够明显减小盾构开挖对既有隧道受力变形响应。  相似文献   

2.
地表堆载会引起邻近土体产生沉降变形,进而会对地下空间中的邻近隧道造成安全威胁。为了获得邻近既有隧道受到地表作用的影响,采用Boussinesq解获得地表堆载对邻近既有隧道的竖向附加应力,将既有隧道简化成搁置Vlasov地基模型的Euler-Bernoulli梁,引入既有隧道侧向土体影响,进一步获得隧道在邻近堆载作用下的变形响应。通过与既有工程案例数据对比分析可知:该方法理论解析与监测数据较为接近,验证了方法的可靠性;与该方法退化解析对比,本文方法更贴近工程实测数据。参数研究表明:隧道与堆载中心间距的增大会引起隧道纵向位移及内力的减小;堆载荷载的增大会引起隧道纵向位移及内力的增大;随着既有隧道刚度的逐渐增大,隧道纵向位移会逐渐减小,但会引起既有隧道内力的增大。  相似文献   

3.
针对隧道开挖引起上覆既有顶管管廊变形的工况,提出了一种可考虑顶管管廊残余顶推力的管廊竖向变形理论计算方法。第一阶段采用修正Loganathan公式解得隧道开挖引起周围土体的自由位移,把土体自由位移附加在既有管廊轴线上,第二阶段将既有管廊简化成无限长Euler-Bernoulli梁搁置在Pasternak地基模型上,同时考虑管廊轴力对其变形响应的影响,随后根据管廊两端自由的约束条件提出了隧道开挖引起既有管廊受力变形半解析解。研究结果表明:与某工程实测数据验证对比,本文方法计算结果与实测较为符合;与本文方法退化解析比较,本文方法预测结果更具有优越性。进一步参数得到如下结论:地层损失率的增大会使得既有管廊位移及其内力呈现线性增大的趋势;随着管廊直径的增大,既有管廊位移和弯矩会迅速增大,其增速也在不断增大;随着隧道开挖轴线埋深的增加,既有管廊位移和内力均会大幅度减小。  相似文献   

4.
盾构开挖易引起上覆地表沉降变形,进一步会引起上覆既有管线的受力变形响应.基于此,提出了一种盾构开挖引起上覆管线变形的简化计算方法.首先采用Loganathan公式获得既有管线在盾构下穿影响下的附加应力,进一步将管线简化成无限长梁放置在Pasternak地基上,引入无限远端侧向土体位移对既有管线的影响,采用力学平衡法获得管线竖向受力变形控制方程,通过有限差分法获得管线变形及其内力数值解析.案例分析表明:与退化解析对比,该方法计算结果更贴近既有文献工程实测数据,验证了其可靠性.进一步参数研究表明:增大隧道与管线的竖向净距会引起既有管线受力变形的非线性减小;管线变形及其内力会随着地层损失率增大而线性增大;管线抗弯刚度的增大会引起管线变形减小,但会大幅增加管线弯矩.  相似文献   

5.
隧道开挖引起邻近桩基的变形影响理论研究都将桩基简化成Euler-Bernoulli梁搁置在传统的Winkler地基模型和Pasternak地基模型上,忽视了桩基变形时桩基自身剪切变形的影响。基于两阶段分析法,采用Loganathan公式计算隧道开挖引起邻近土体自由位移场,再将桩基简化成可考虑剪切变形的Timoshenko梁放置在Kerr地基模型上,建立桩基水平方向受力平衡方程,结合桩基两端约束条件,获得邻近桩基的水平位移及其内力半解析解。随后考虑群桩间土体遮拦效应,进一步获得隧道开挖对邻近群桩的变形影响。通过与工程实测数据及有限元模型计算结果对比,验证了本文方法的合理性。研究结果表明:邻近群桩水平位移及其弯矩随着地层损失率增大而线性增大;隧道埋深增大会引起邻近群桩水平位移减小,桩基弯矩峰值在隧道埋深较大时明显减小;桩隧间距增大会引起邻近群桩水平位移及其内力减小,其减小速率逐渐变缓。  相似文献   

6.
王晓军 《科学技术与工程》2023,23(26):11398-11404
盾构下穿易引起周边土体产生自由位移,并进一步对邻近既有管线的受力变形产生较大影响。论文从能量角度出发,采用Rayleigh-Ritz法获得管线变形函数,并基于Pasternak地基模型建立管线在外力作用下的势能方程,采用最小势能原理对管线能量进行变分求解,获得盾构下穿引起上覆既有管线受力变形解析解。与既有文献实际工程监测数据对比,验证了该方法计算结果的合理性;与基于Pasternak和Winkler地基模型差分解进行对比分析,该方法更贴近实测数据。进一步参数研究表明:增大隧道开挖半径、地层损失率会导致管线变形及其弯矩的增大;隧道与管线的夹角的增大会减轻管线变形,但会增大管线弯矩。  相似文献   

7.
采用两阶段方法简便地研究盾构隧道开挖引起的邻近群桩竖向位移。第1阶段,采用Loganathan公式计算盾构隧道开挖引起的桩基轴线处土体竖向位移。第2阶段,首先基于Winkler地基梁模型,将土体位移转化为荷载施加到桩基上;然后,结合叠加法,计算盾构隧道开挖引起的邻近单桩竖向位移;最后,考虑群桩间的土体遮拦效应,再结合叠加法求解出盾构隧道开挖引起的邻近群桩竖向位移。通过与有限元模拟结果进行对比,验证本文所提计算方法的准确性,并进一步分析各物理参量变化对群桩竖向位移的影响。研究结果表明:其余参数不变的情况下,隧道埋深和地层损失比增大均会增强盾构隧道开挖对邻近群桩的影响,导致邻近群桩的竖向位移增大;桩基直径增大导致其抵抗盾构隧道开挖影响的能力增加,进而引起邻近群桩的竖向位移略微减小;土体弹性模量增加导致邻近群桩顶端所受的向下荷载与底端所受的向上荷载均增加,进而引起邻近群桩的顶端竖向位移(最大位移)增大,底端竖向位移减小;桩基与隧道距离增加可减弱盾构隧道开挖对邻近桩基的影响,减小桩基竖向位移;群桩间距增大可引起桩基间的土体遮拦效应减弱,导致桩基的相对竖向位移增大。  相似文献   

8.
采用统一土体移动模型三维解计算盾构施工引起的地下管线平面处土体竖向位移,并基于Pasternak地基模型对地下管线受力模型进行简化,建立单线、双线盾构隧道开挖引起的地下管线三维竖向位移计算公式。将计算结果与实测值进行对比;并探讨了管线材质、管线埋深以及土体损失率改变对管线竖向位移的影响。研究结果表明:计算结果与实测值比较吻合,可以计算单线和双线盾构开挖工况;双线隧道开挖引起的管线竖向位移大于单线隧道引起的管线竖向位移;管线材质和管线埋深的改变对管线最大竖向位移的影响较小,管线最大竖向位移随抗弯刚度增大而减小,随埋深增大而增大;土体损失率的改变对管线最大竖向位移的影响较大,土体损失率越大管线最大竖向位移也越大。  相似文献   

9.
基于盾构开挖侧穿邻近桩基引起桩-土相互作用的实际工况,提出了一种可预测桩基水平变形的简化计算方法. 采用两阶段法获得盾构开挖引起邻近桩基水平位移简化计算方法,第一阶段采用Loganathan公式计算盾构开挖引起邻近桩基轴线处土体自由水平位移场;第二阶段把桩基简化成 Euler-Bernoulli 梁放置在 Vlasov 地基模型上,建立桩基水平位移控制方程,结合桩基两端约束情况,采用差分法获得邻近桩基的水平位移矩阵解. 随后考虑群桩之间的土体遮拦效应,进一步获得邻近群桩的水平变形差分解 . 通过与两个既有工程案例实测以及既有地基模型计算结果对比,验证了本文方法的优越性. 群桩参数分析表明:地层损失率及隧道埋深的增大均会引起邻近群桩水平位移的增大,但桩身产生最大位移处会随着隧道埋深增加而增大;桩隧之间间距的增大会引起邻近群桩水平位移的减小,但其减小速率逐渐变缓.  相似文献   

10.
基坑开挖会造成下部隧道周围土压力变化以及土体产生位移,使隧道结构稳定性受到影响,从而变形控制显得尤为重要。以合肥南站南广场基坑工程实测数据为例,采用PLAXIS 2D有限元软件对基坑下部隧道和地表变形的情况进行数值计算。研究表明:数值计算结果与实测值较为吻合,隧道发生竖向和水平位移,竖向位移比水平位移大,隧道的位移值随着开挖深度呈线性趋势;基坑开挖会引起隧道上方地表变形,地表沉降呈向下二次抛物线形式,坑底产生了塑性隆起。  相似文献   

11.
采用剪切错台模型,研究新建盾构隧道正交下穿对上方既有地铁盾构隧道的影响.考虑新建隧道下穿时刀盘附加推力、盾壳摩擦力以及注浆附加压力在既有隧道轴线处产生的附加应力,将既有地铁盾构隧道简化为由剪切弹簧连接的弹性地基短梁,运用最小势能原理并采用合理的位移试函数,建立计算方程来求解既有隧道的竖向位移值、盾构环之间的错台量、环间剪切力值以及这三者随着新建隧道掘进的三维变化过程.研究结果表明:用剪切错台模型和最小势能原理计算得到的既有盾构隧道竖向位移值与实测值较为吻合;既有盾构隧道竖向位移最大值处的隧道错台量接近0,在竖向位移曲线的反弯点处隧道错台量和环间剪切力值最大;随着新建隧道的掘进,既有隧道的竖向位移、错台量和环间剪力值不断增大,最后趋于稳定.  相似文献   

12.
现有基坑近接隧道施工的保护措施多为加强支护刚度或采用轴力伺服系统以减小围护结构变形,未能深入考虑支撑伸缩调控下基坑-隧道的受力特性。为了明确基坑开挖施工对邻近既有隧道影响以及可调节内支撑伸缩对“基坑-隧道”受力特性的影响规律,开展了砂土地基中“基坑-隧道”相互影响的室内模型试验研究。获得了隧道的内力、周围土压力、隧道上部地表沉降、地连墙变形、墙背土压力等变化规律。研究结果表明:深基坑开挖施工过程中,隧道呈现上下压缩、左右拉伸的趋势。临近基坑一侧的土压力减小迅速,远离基坑一侧的土压力表现为增大。周边地表沉降呈碟形。内支撑主动伸缩调控下,基坑下部支撑伸缩引起的隧道弯矩变化量大于调控上部支撑,同时伸缩三道支撑时影响最大。支撑缩短时,隧道拱顶、拱底弯矩值正向增大,拱腰弯矩值反向增大。支撑伸长时,拱顶、拱底弯矩值减小,拱腰弯矩值增大。支撑伸缩对隧道拱腰水平土压力影响明显,对拱顶和拱底竖向土压力影响微弱。  相似文献   

13.
以天津地铁3号线铁东路站~北站盾构区间隧道为背景,通过现场实测和数值模拟的方法,对盾构施工穿越既有铁路引起的地表沉降规律进行了研究。现场实测数据表明:沿隧道轴线方向不同位置的地表位移变化较大,对于双线隧道施工,后建隧道对先建隧道的土体扰动影响较大。结合现场监测数据及各项施工参数设置,采用ANSYS有限元分析软件对隧道下穿既有铁路的施工过程进行了数值模拟。在此基础上,通过模拟与实测数据的对比分析,总结了盾构隧道施工引起的既有铁路纵向和横向地表沉降规律,为类似工程的设计和施工提供参考依据。  相似文献   

14.
孙伟  任洋  王永刚 《科学技术与工程》2023,23(10):4339-4347
基于镜像法和Mindlin解,考虑土体损失、刀盘推力、盾壳摩擦力和注浆压力的影响,推导出类矩形盾构隧道施工在既有隧道轴线处产生的附加应力计算公式,将既有隧道简化为由剪切弹簧连接的弹性地基短梁,结合最小势能原理推导出既有隧道竖向位移计算公式。依据工程实例构建数值计算模型,对比本文计算结果和数值模拟结果,验证本文计算方法的适用性。研究结果表明:本文计算方法的结果与数值模拟结果吻合程度高,验证了本文计算方法的正确性;随着类矩形盾构隧道掘进,邻近隧道的纵向位移、环间剪切量和剪切力不断增大,在盾构机通过邻近隧道轴线20 m后趋于稳定;邻近隧道沉降变形最大处的环间剪切量和剪切力最小,沉降变形曲线反弯点处的环间剪切量和剪切力最大。  相似文献   

15.
盾构机掘进过程中,千斤顶顶进力的不均匀引起的纵向位移是管片间初始错台的主要原因之一;基于Timoshenko梁理论的隧道纵向位移计算方法,未能考虑隧道开挖后围岩卸载破坏的变形特征及围岩与衬砌结构的协同作用效应,预测误差较大。建立了考虑围岩卸载扩容效应的等效地基抗力系数计算方法,提出了能考虑螺栓个数的等效抗剪刚度计算公式,建立一种基于Timoshenko梁理论的改进管片拼装式隧道纵向位移理论计算方法。实际工程案例分析表明:考虑围岩开挖卸载过程中围岩的非线性体积相关塑性变形(即扩容效应)更合理;考虑壁后注浆液固化过程的时效性,采用改进的滑移边界条件计算的纵向位移最大值是传统的固定端边界的计算值的2.3倍,边界条件对计算结果影响较大,本文计算方法更符合实际情况,也更安全。  相似文献   

16.
为了研究管廊结构在爆炸荷载作用下的荷载分布规律、动力响应及破坏机理,评估管廊工程的防护潜力,获取管廊在爆炸荷载作用下的试验数据,设计并开展了管廊结构的抗爆试验.本文主要分析了在比例爆深为2.000,1.587,1.260 m/kg^1/3三种工况下管廊顶板中心处的动力响应.试验测得了三种工况下爆坑大小,以及顶板中心底部纵筋和箍筋及侧墙中心内侧箍筋应变时程曲线、加速度时程曲线、反射压力时程曲线和位移时程曲线.试验数据表明,顶板中心底部箍筋应变远大于纵筋,且振动使管廊产生的反复位移大小相当,建议管廊采用对称配筋、箍筋加密、混凝土保证抗压强度.通过常规武器效应计算软件CONWEP计算并验证了反射压力峰值的准确性,进一步得到了作用于管廊的总压力并将其简化为均布荷载,计算出弹性响应阶段顶板中心的最大位移,与实测位移进行比较,吻合较好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号