首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PAX6 is widely expressed in the central nervous system. Heterozygous PAX6 mutations in human aniridia cause defects that would seem to be confined to the eye. Magnetic resonance imaging (MRI) and smell testing reveal the absence or hypoplasia of the anterior commissure and reduced olfaction in a large proportion of aniridia cases, which shows that PAX6 haploinsuffiency causes more widespread human neuro developmental anomalies.  相似文献   

2.
The polo-like kinase Plk4 (also called Sak) is required for late mitotic progression, cell survival and postgastrulation embryonic development. Here we identified a phenotype resulting from Plk4 haploinsufficiency in Plk4 heterozygous cells and mice. Plk4+/- embryonic fibroblasts had increased centrosomal amplification, multipolar spindle formation and aneuploidy compared with wild-type cells. The incidence of spontaneous liver and lung cancers was approximately 15 times high in elderly Plk4+/- mice than in Plk4+/+ littermates. Using the in vivo model of partial hepatectomy to induce synchronous cell cycle entry, we determined that the precise regulation of cyclins D1, E and B1 and of Cdk1 was impaired in Plk4+/- regenerating liver, and p53 activation and p21 and BubR1 expression were suppressed. These defects were associated with progressive cell cycle delays, increased spindle irregularities and accelerated hepatocellular carcinogenesis in Plk4+/- mice. Loss of heterozygosity occurs frequently (approximately 60%) at polymorphic markers adjacent to the PLK4 locus in human hepatoma. Reduced Plk4 gene dosage increases the probability of mitotic errors and cancer development.  相似文献   

3.
4.
The genetic analysis of congenital skull malformations provides insight into normal mechanisms of calvarial osteogenesis. Enlarged parietal foramina (PFM) are oval defects of the parietal bones caused by deficient ossification around the parietal notch, which is normally obliterated during the fifth fetal month. PFM are usually asymptomatic, but may be associated with headache, scalp defects and structural or vascular malformations of the brain. Inheritance is frequently autosomal dominant, but no causative mutations have been identified in non-syndromic cases. We describe here heterozygous mutations of the homeobox gene MSX2 (located on 5q34-q35) in three unrelated families with PFM. One is a deletion of approximately 206 kb including the entire gene and the others are intragenic mutations of the DNA-binding homeodomain (RK159-160del and R172H) that predict disruption of critical intramolecular and DNA contacts. Mouse Msx2 protein with either of the homeodomain mutations exhibited more than 85% reduction in binding to an optimal Msx2 DNA-binding site. Our findings contrast with the only described MSX2 homeodomain mutation (P148H), associated with craniosynostosis, that binds with enhanced affinity to the same target. This demonstrates that MSX2 dosage is critical for human skull development and suggests that PFM and craniosynostosis result, respectively, from loss and gain of activity in an MSX2-mediated pathway of calvarial osteogenic differentiation.  相似文献   

5.
6.
7.
8.
9.
Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia   总被引:15,自引:0,他引:15  
Familial hypomagnesemia with secondary hypocalcemia (OMIM 602014) is an autosomal recessive disease that results in electrolyte abnormalities shortly after birth. Affected individuals show severe hypomagnesemia and hypocalcemia, which lead to seizures and tetany. The disorder has been thought to be caused by a defect in the intestinal absorption of magnesium, rather than by abnormal renal loss of magnesium. Restoring the concentrations of serum magnesium to normal values by high-dose magnesium supplementation can overcome the apparent defect in magnesium absorption and in serum concentrations of calcium. Life-long magnesium supplementation is required to overcome the defect in magnesium handling by these individuals. We previously mapped the gene locus to chromosome 9q in three large inbred kindreds from Israel. Here we report that mutation of TRPM6 causes hypomagnesemia with secondary hypocalcemia and show that individuals carrying mutations in this gene have abnormal renal magnesium excretion.  相似文献   

10.
Defects in cilia are associated with several human disorders, including Kartagener syndrome, polycystic kidney disease, nephronophthisis and hydrocephalus. We proposed that the pleiotropic phenotype of Bardet-Biedl syndrome (BBS), which encompasses retinal degeneration, truncal obesity, renal and limb malformations and developmental delay, is due to dysfunction of basal bodies and cilia. Here we show that individuals with BBS have partial or complete anosmia. To test whether this phenotype is caused by ciliary defects of olfactory sensory neurons, we examined mice with deletions of Bbs1 or Bbs4. Loss of function of either BBS protein affected the olfactory, but not the respiratory, epithelium, causing severe reduction of the ciliated border, disorganization of the dendritic microtubule network and trapping of olfactory ciliary proteins in dendrites and cell bodies. Our data indicate that BBS proteins have a role in the microtubule organization of mammalian ciliated cells and that anosmia might be a useful determinant of other pleiotropic disorders with a suspected ciliary involvement.  相似文献   

11.
12.
Angle-closure glaucoma (ACG) is a subset of glaucoma affecting 16 million people. Although 4 million people are bilaterally blind from ACG, the causative molecular mechanisms of ACG remain to be defined. High intraocular pressure induces glaucoma in ACG. High intraocular pressure traditionally was suggested to result from the iris blocking or closing the angle of the eye, thereby limiting aqueous humor drainage. Eyes from individuals with ACG often have a modestly decreased axial length, shallow anterior chamber and relatively large lens, features that predispose to angle closure. Here we show that genetic alteration of a previously unidentified serine protease (PRSS56) alters axial length and causes a mouse phenotype resembling ACG. Mutations affecting this protease also cause a severe decrease of axial length in individuals with posterior microphthalmia. Together, these data suggest that alterations of this serine protease may contribute to a spectrum of human ocular conditions including reduced ocular size and ACG.  相似文献   

13.
Male embryonic mice with mutations in the X-linked aristaless-related homeobox gene (Arx) developed with small brains due to suppressed proliferation and regional deficiencies in the forebrain. These mice also showed aberrant migration and differentiation of interneurons containing gamma-aminobutyric acid (GABAergic interneurons) in the ganglionic eminence and neocortex as well as abnormal testicular differentiation. These characteristics recapitulate some of the clinical features of X-linked lissencephaly with abnormal genitalia (XLAG) in humans. We found multiple loss-of-function mutations in ARX in individuals affected with XLAG and in some female relatives, and conclude that mutation of ARX causes XLAG. The present report is, to our knowledge, the first to use phenotypic analysis of a knockout mouse to identify a gene associated with an X-linked human brain malformation.  相似文献   

14.
15.
Feingold syndrome is characterized by variable combinations of esophageal and duodenal atresias, microcephaly, learning disability, syndactyly and cardiac defect. We show here that heterozygous mutations in the gene MYCN are present in Feingold syndrome. All mutations are predicted to disrupt both the full-length protein and a new shortened MYCN isoform, suggesting that multiple aspects of early embryogenesis and postnatal brain growth in humans are tightly regulated by MYCN dosage.  相似文献   

16.
17.
Haematopoietic development is regulated by nuclear protein complexes that coordinate lineage-specific patterns of gene expression. Targeted mutagenesis in embryonic stem cells and mice has revealed roles for the X-linked gene Gata1 in erythrocyte and megakaryocyte differentiation. GATA-1 is the founding member of a family of DNA-binding proteins that recognize the motif WGATAR through a conserved multifunctional domain consisting of two C4-type zinc fingers. Here we describe a family with X-linked dyserythropoietic anaemia and thrombocytopenia due to a substitution of methionine for valine at amino acid 205 of GATA-1. This highly conserved valine is necessary for interaction of the amino-terminal zinc finger of GATA-1 with its essential cofactor, FOG-1 (for friend of GATA-1; refs 9-12). We show that the V205M mutation abrogates the interaction between Gata-1 and Fog-1, inhibiting the ability of Gata-1 to rescue erythroid differentiation in an erythroid cell line deficient for Gata-1 (G1E). Our findings underscore the importance of FOG-1:Gata-1 associations in both megakaryocyte and erythroid development, and suggest that other X-linked anaemias or thrombocytopenias may be caused by defects in GATA1.  相似文献   

18.
Horsthemke B 《Nature genetics》2007,39(5):573-4; author reply 575-6
  相似文献   

19.
Loss of tight association between epidermis and dermis underlies several blistering disorders and is frequently caused by impaired function of extracellular matrix (ECM) proteins. Here we describe a new protein in mouse, Fras1, that is specifically detected in a linear fashion underlying the epidermis and the basal surface of other epithelia in embryos. Loss of Fras1 function results in the formation of subepidermal hemorrhagic blisters as well as unilateral or bilateral renal agenesis during mouse embryogenesis. Postnatally, homozygous Fras1 mutants have fusion of the eyelids and digits and unilateral renal agenesis or dysplasia. The defects observed in Fras1-/- mice phenocopy those of the existing bl (blebbed) mouse mutants, which have been considered a model for the human genetic disorder Fraser syndrome. We show that bl/bl homozygous embryos are devoid of Fras1 protein, consistent with the finding that Fras1 is mutated in these mice. In sum, our data suggest that perturbations in the composition of the extracellular space underlying epithelia could account for the onset of the blebbed phenotype in mouse and Fraser syndrome manifestation in human.  相似文献   

20.
Williams syndrome is a neurodevelopmental disorder caused by the hemizygous deletion of 1.6 Mb on human chromosome 7q11.23. This region comprises the gene CYLN2, encoding CLIP-115, a microtubule-binding protein of 115 kD. Using a gene-targeting approach, we provide evidence that mice with haploinsufficiency for Cyln2 have features reminiscent of Williams syndrome, including mild growth deficiency, brain abnormalities, hippocampal dysfunction and particular deficits in motor coordination. Absence of CLIP-115 also leads to increased levels of CLIP-170 (a closely related cytoplasmic linker protein) and dynactin at the tips of growing microtubules. This protein redistribution may affect dynein motor regulation and, together with the loss of CLIP-115-specific functions, underlie neurological alterations in Williams syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号