首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lysyl oxidase is essential for hypoxia-induced metastasis   总被引:1,自引:0,他引:1  
Metastasis is a multistep process responsible for most cancer deaths, and it can be influenced by both the immediate microenvironment (cell-cell or cell-matrix interactions) and the extended tumour microenvironment (for example vascularization). Hypoxia (low oxygen) is clinically associated with metastasis and poor patient outcome, although the underlying processes remain unclear. Microarray studies have shown the expression of lysyl oxidase (LOX) to be elevated in hypoxic human tumour cells. Paradoxically, LOX expression is associated with both tumour suppression and tumour progression, and its role in tumorigenesis seems dependent on cellular location, cell type and transformation status. Here we show that LOX expression is regulated by hypoxia-inducible factor (HIF) and is associated with hypoxia in human breast and head and neck tumours. Patients with high LOX-expressing tumours have poor distant metastasis-free and overall survivals. Inhibition of LOX eliminates metastasis in mice with orthotopically grown breast cancer tumours. Mechanistically, secreted LOX is responsible for the invasive properties of hypoxic human cancer cells through focal adhesion kinase activity and cell to matrix adhesion. Furthermore, LOX may be required to create a niche permissive for metastatic growth. Our findings indicate that LOX is essential for hypoxia-induced metastasis and is a good therapeutic target for preventing and treating metastases.  相似文献   

2.
Png KJ  Halberg N  Yoshida M  Tavazoie SF 《Nature》2012,481(7380):190-194
Metastatic progression of cancer is a complex and clinically daunting process. We previously identified a set of human microRNAs (miRNAs) that robustly suppress breast cancer metastasis to lung and bone and which display expression levels that predict human metastasis. Although these findings revealed miRNAs as suppressors of cell-autonomous metastatic phenotypes, the roles of non-coding RNAs in non-cell-autonomous cancer progression processes remain unknown. Here we reveal that endogenous miR-126, an miRNA silenced in a variety of common human cancers, non-cell-autonomously regulates endothelial cell recruitment to metastatic breast cancer cells, in vitro and in vivo. It suppresses metastatic endothelial recruitment, metastatic angiogenesis and metastatic colonization through coordinate targeting of IGFBP2, PITPNC1 and MERTK--novel pro-angiogenic genes and biomarkers of human metastasis. Insulin-like growth factor binding protein 2 (IGFBP2) secreted by metastatic cells recruits endothelia by modulating IGF1-mediated activation of the IGF type-I receptor on endothelial cells; whereas c-Mer tyrosine kinase (MERTK) receptor cleaved from metastatic cells promotes endothelial recruitment by competitively antagonizing the binding of its ligand GAS6 to endothelial MERTK receptors. Co-injection of endothelial cells with breast cancer cells non-cell-autonomously rescues their miR-126-induced metastatic defect, revealing a novel and important role for endothelial interactions in metastatic initiation. Through loss-of-function and epistasis experiments, we delineate an miRNA regulatory network's individual components as novel and cell-extrinsic regulators of endothelial recruitment, angiogenesis and metastatic colonization. We also identify the IGFBP2/IGF1/IGF1R and GAS6/MERTK signalling pathways as regulators of cancer-mediated endothelial recruitment. Our work further reveals endothelial recruitment and endothelial interactions in the tumour microenvironment to be critical features of metastatic breast cancer.  相似文献   

3.
Mesenchymal stem cells have been recently described to localize to breast carcinomas, where they integrate into the tumour-associated stroma. However, the involvement of mesenchymal stem cells (or their derivatives) in tumour pathophysiology has not been addressed. Here, we demonstrate that bone-marrow-derived human mesenchymal stem cells, when mixed with otherwise weakly metastatic human breast carcinoma cells, cause the cancer cells to increase their metastatic potency greatly when this cell mixture is introduced into a subcutaneous site and allowed to form a tumour xenograft. The breast cancer cells stimulate de novo secretion of the chemokine CCL5 (also called RANTES) from mesenchymal stem cells, which then acts in a paracrine fashion on the cancer cells to enhance their motility, invasion and metastasis. This enhanced metastatic ability is reversible and is dependent on CCL5 signalling through the chemokine receptor CCR5. Collectively, these data demonstrate that the tumour microenvironment facilitates metastatic spread by eliciting reversible changes in the phenotype of cancer cells.  相似文献   

4.
New signals from the invasive front   总被引:1,自引:0,他引:1  
Christofori G 《Nature》2006,441(7092):444-450
Approximately 90% of all cancer deaths arise from the metastatic spread of primary tumours. Of all the processes involved in carcinogenesis, local invasion and the formation of metastases are clinically the most relevant, but they are the least well understood at the molecular level. Revealing their mechanisms is one of the main challenges for exploratory and applied cancer research. Recent experimental progress has identified a number of molecular pathways and cellular mechanisms that underlie the multistage process of metastasis formation: these include tumour invasion, tumour-cell dissemination through the bloodstream or the lymphatic system, colonization of distant organs and, finally, fatal outgrowth of metastases.  相似文献   

5.
Metastasis is a major factor in the malignancy of cancers, and is often responsible for the failure of cancer treatment. Anoikis (apoptosis resulting from loss of cell-matrix interactions) has been suggested to act as a physiological barrier to metastasis; resistance to anoikis may allow survival of cancer cells during systemic circulation, thereby facilitating secondary tumour formation in distant organs. In an attempt to identify metastasis-associated oncogenes, we designed an unbiased, genome-wide functional screen solely on the basis of anoikis suppression. Here, we report the identification of TrkB, a neurotrophic tyrosine kinase receptor, as a potent and specific suppressor of caspase-associated anoikis of non-malignant epithelial cells. By activating the phosphatidylinositol-3-OH kinase/protein kinase B pathway, TrkB induced the formation of large cellular aggregates that survive and proliferate in suspension. In mice, these cells formed rapidly growing tumours that infiltrated lymphatics and blood vessels to colonize distant organs. Consistent with the ability of TrkB to suppress anoikis, metastases--whether small vessel infiltrates or large tumour nodules--contained very few apoptotic cells. These observations demonstrate the potent oncogenic effects of TrkB and uncover a specific pro-survival function that may contribute to its metastatic capacity, providing a possible explanation for the aggressive nature of human tumours that overexpress TrkB.  相似文献   

6.
Metastasis entails numerous biological functions that collectively enable cancerous cells from a primary site to disseminate and overtake distant organs. Using genetic and pharmacological approaches, we show that the epidermal growth factor receptor ligand epiregulin, the cyclooxygenase COX2, and the matrix metalloproteinases 1 and 2, when expressed in human breast cancer cells, collectively facilitate the assembly of new tumour blood vessels, the release of tumour cells into the circulation, and the breaching of lung capillaries by circulating tumour cells to seed pulmonary metastasis. These findings reveal how aggressive primary tumorigenic functions can be mechanistically coupled to greater lung metastatic potential, and how such biological activities may be therapeutically targeted with specific drug combinations.  相似文献   

7.
Genomic analysis of metastasis reveals an essential role for RhoC   总被引:124,自引:0,他引:124  
Clark EA  Golub TR  Lander ES  Hynes RO 《Nature》2000,406(6795):532-535
The most damaging change during cancer progression is the switch from a locally growing tumour to a metastatic killer. This switch is believed to involve numerous alterations that allow tumour cells to complete the complex series of events needed for metastasis. Relatively few genes have been implicated in these events. Here we use an in vivo selection scheme to select highly metastatic melanoma cells. By analysing these cells on DNA arrays, we define a pattern of gene expression that correlates with progression to a metastatic phenotype. In particular, we show enhanced expression of several genes involved in extracellular matrix assembly and of a second set of genes that regulate, either directly or indirectly, the actin-based cytoskeleton. One of these, the small GTPase RhoC, enhances metastasis when overexpressed, whereas a dominant-negative Rho inhibits metastasis. Analysis of the phenotype of cells expressing dominant-negative Rho or RhoC indicates that RhoC is important in tumour cell invasion. The genomic approach allows us to identify families of genes involved in a process, not just single genes, and can indicate which molecular and cellular events might be important in complex biological processes such as metastasis.  相似文献   

8.
The cellular and molecular mechanisms by which a tumour cell undergoes metastasis to a predetermined location are largely unknown. Here we demonstrate that bone marrow-derived haematopoietic progenitor cells that express vascular endothelial growth factor receptor 1 (VEGFR1; also known as Flt1) home to tumour-specific pre-metastatic sites and form cellular clusters before the arrival of tumour cells. Preventing VEGFR1 function using antibodies or by the removal of VEGFR1(+) cells from the bone marrow of wild-type mice abrogates the formation of these pre-metastatic clusters and prevents tumour metastasis, whereas reconstitution with selected Id3 (inhibitor of differentiation 3)-competent VEGFR1+ cells establishes cluster formation and tumour metastasis in Id3 knockout mice. We also show that VEGFR1+ cells express VLA-4 (also known as integrin alpha4beta1), and that tumour-specific growth factors upregulate fibronectin--a VLA-4 ligand--in resident fibroblasts, providing a permissive niche for incoming tumour cells. Conditioned media obtained from distinct tumour types with unique patterns of metastatic spread redirected fibronectin expression and cluster formation, thereby transforming the metastatic profile. These findings demonstrate a requirement for VEGFR1+ haematopoietic progenitors in the regulation of metastasis, and suggest that expression patterns of fibronectin and VEGFR1+VLA-4+ clusters dictate organ-specific tumour spread.  相似文献   

9.
CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis   总被引:1,自引:0,他引:1  
Qian BZ  Li J  Zhang H  Kitamura T  Zhang J  Campion LR  Kaiser EA  Snyder LA  Pollard JW 《Nature》2011,475(7355):222-225
Macrophages, which are abundant in the tumour microenvironment, enhance malignancy. At metastatic sites, a distinct population of metastasis-associated macrophages promotes the extravasation, seeding and persistent growth of tumour cells. Here we define the origin of these macrophages by showing that Gr1-positive inflammatory monocytes are preferentially recruited to pulmonary metastases but not to primary mammary tumours in mice. This process also occurs for human inflammatory monocytes in pulmonary metastases of human breast cancer cells. The recruitment of these inflammatory monocytes, which express CCR2 (the receptor for chemokine CCL2), as well as the subsequent recruitment of metastasis-associated macrophages and their interaction with metastasizing tumour cells, is dependent on CCL2 synthesized by both the tumour and the stroma. Inhibition of CCL2-CCR2 signalling blocks the recruitment of inflammatory monocytes, inhibits metastasis in vivo and prolongs the survival of tumour-bearing mice. Depletion of tumour-cell-derived CCL2 also inhibits metastatic seeding. Inflammatory monocytes promote the extravasation of tumour cells in a process that requires monocyte-derived vascular endothelial growth factor. CCL2 expression and macrophage infiltration are correlated with poor prognosis and metastatic disease in human breast cancer. Our data provide the mechanistic link between these two clinical associations and indicate new therapeutic targets for treating metastatic breast cancer.  相似文献   

10.
Angiogenesis is critical during tumour initiation and malignant progression. Different strategies aimed at blocking vascular endothelial growth factor (VEGF) and its receptors have been developed to inhibit angiogenesis in cancer patients. It has become increasingly clear that in addition to its effect on angiogenesis, other mechanisms including a direct effect of VEGF on tumour cells may account for the efficiency of VEGF-blockade therapies. Cancer stem cells (CSCs) have been described in various cancers including squamous tumours of the skin. Here we use a mouse model of skin tumours to investigate the impact of the vascular niche and VEGF signalling on controlling the stemness (the ability to self renew and differentiate) of squamous skin tumours during the early stages of tumour progression. We show that CSCs of skin papillomas are localized in a perivascular niche, in the immediate vicinity of endothelial cells. Furthermore, blocking VEGFR2 caused tumour regression not only by decreasing the microvascular density, but also by reducing CSC pool size and impairing CSC renewal properties. Conditional deletion of Vegfa in tumour epithelial cells caused tumours to regress, whereas VEGF overexpression by tumour epithelial cells accelerated tumour growth. In addition to its well-known effect on angiogenesis, VEGF affected skin tumour growth by promoting cancer stemness and symmetric CSC division, leading to CSC expansion. Moreover, deletion of neuropilin-1 (Nrp1), a VEGF co-receptor expressed in cutaneous CSCs, blocked VEGF's ability to promote cancer stemness and renewal. Our results identify a dual role for tumour-cell-derived VEGF in promoting cancer stemness: by stimulating angiogenesis in a paracrine manner, VEGF creates a perivascular niche for CSCs, and by directly affecting CSCs through Nrp1 in an autocrine loop, VEGF stimulates cancer stemness and renewal. Finally, deletion of Nrp1 in normal epidermis prevents skin tumour initiation. These results may have important implications for the prevention and treatment of skin cancers.  相似文献   

11.
Tumour evolution inferred by single-cell sequencing   总被引:1,自引:0,他引:1  
Genomic analysis provides insights into the role of copy number variation in disease, but most methods are not designed to resolve mixed populations of cells. In tumours, where genetic heterogeneity is common, very important information may be lost that would be useful for reconstructing evolutionary history. Here we show that with flow-sorted nuclei, whole genome amplification and next generation sequencing we can accurately quantify genomic copy number within an individual nucleus. We apply single-nucleus sequencing to investigate tumour population structure and evolution in two human breast cancer cases. Analysis of 100 single cells from a polygenomic tumour revealed three distinct clonal subpopulations that probably represent sequential clonal expansions. Additional analysis of 100 single cells from a monogenomic primary tumour and its liver metastasis indicated that a single clonal expansion formed the primary tumour and seeded the metastasis. In both primary tumours, we also identified an unexpectedly abundant subpopulation of genetically diverse 'pseudodiploid' cells that do not travel to the metastatic site. In contrast to gradual models of tumour progression, our data indicate that tumours grow by punctuated clonal expansions with few persistent intermediates.  相似文献   

12.
Shin K  Lee J  Guo N  Kim J  Lim A  Qu L  Mysorekar IU  Beachy PA 《Nature》2011,472(7341):110-114
Epithelial integrity in metazoan organs is maintained through the regulated proliferation and differentiation of organ-specific stem and progenitor cells. Although the epithelia of organs such as the intestine regenerate constantly and thus remain continuously proliferative, other organs, such as the mammalian urinary bladder, shift from near-quiescence to a highly proliferative state in response to epithelial injury. The cellular and molecular mechanisms underlying this injury-induced mode of regenerative response are poorly defined. Here we show in mice that the proliferative response to bacterial infection or chemical injury within the bladder is regulated by signal feedback between basal cells of the urothelium and the stromal cells that underlie them. We demonstrate that these basal cells include stem cells capable of regenerating all cell types within the urothelium, and are marked by expression of the secreted protein signal Sonic hedgehog (Shh). On injury, Shh expression in these basal cells increases and elicits increased stromal expression of Wnt protein signals, which in turn stimulate the proliferation of both urothelial and stromal cells. The heightened activity of this signal feedback circuit and the associated increase in cell proliferation appear to be required for restoration of urothelial function and, in the case of bacterial injury, may help clear and prevent further spread of infection. Our findings provide a conceptual framework for injury-induced epithelial regeneration in endodermal organs, and may provide a basis for understanding the roles of signalling pathways in cancer growth and metastasis.  相似文献   

13.
Endogenous human microRNAs that suppress breast cancer metastasis   总被引:6,自引:0,他引:6  
  相似文献   

14.
Involvement of chemokine receptors in breast cancer metastasis   总被引:344,自引:0,他引:344  
Breast cancer is characterized by a distinct metastatic pattern involving the regional lymph nodes, bone marrow, lung and liver. Tumour cell migration and metastasis share many similarities with leukocyte trafficking, which is critically regulated by chemokines and their receptors. Here we report that the chemokine receptors CXCR4 and CCR7 are highly expressed in human breast cancer cells, malignant breast tumours and metastases. Their respective ligands CXCL12/SDF-1alpha and CCL21/6Ckine exhibit peak levels of expression in organs representing the first destinations of breast cancer metastasis. In breast cancer cells, signalling through CXCR4 or CCR7 mediates actin polymerization and pseudopodia formation, and subsequently induces chemotactic and invasive responses. In vivo, neutralizing the interactions of CXCL12/CXCR4 significantly impairs metastasis of breast cancer cells to regional lymph nodes and lung. Malignant melanoma, which has a similar metastatic pattern as breast cancer but also a high incidence of skin metastases, shows high expression levels of CCR10 in addition to CXCR4 and CCR7. Our findings indicate that chemokines and their receptors have a critical role in determining the metastatic destination of tumour cells.  相似文献   

15.
Continuous turnover of epithelia is ensured by the extensive self-renewal capacity of tissue-specific stem cells. Similarly, epithelial tumour maintenance relies on cancer stem cells (CSCs), which co-opt stem cell properties. For most tumours, the cellular origin of these CSCs and regulatory pathways essential for sustaining stemness have not been identified. In murine skin, follicular morphogenesis is driven by bulge stem cells that specifically express CD34. Here we identify a population of cells in early epidermal tumours characterized by phenotypic and functional similarities to normal bulge skin stem cells. This population contains CSCs, which are the only cells with tumour initiation properties. Transplants derived from these CSCs preserve the hierarchical organization of the primary tumour. We describe beta-catenin signalling as being essential in sustaining the CSC phenotype. Ablation of the beta-catenin gene results in the loss of CSCs and complete tumour regression. In addition, we provide evidence for the involvement of increased beta-catenin signalling in malignant human squamous cell carcinomas. Because Wnt/beta-catenin signalling is not essential for normal epidermal homeostasis, such a mechanistic difference may thus be targeted to eliminate CSCs and consequently eradicate squamous cell carcinomas.  相似文献   

16.
乳腺癌相关转移基因的研究进展   总被引:1,自引:0,他引:1  
目的综述肿瘤转移基因在乳腺癌中的研究进展。方法采用文献回顾的方法,对目前国内外肿瘤转移基因在乳腺癌中的研究状况加以分析与综述。结果肿瘤转移基因与乳腺癌的发生、转移及预后相关。结论对肿瘤转移基因的深入研究有助于进一步深化对乳腺癌生物学行为的认识,为肿瘤转移的分子诊断和基因治疗提供新的思路。  相似文献   

17.
Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts   总被引:1,自引:0,他引:1  
Homeostasis of self-renewing small intestinal crypts results from neutral competition between Lgr5 stem cells, which are small cycling cells located at crypt bottoms. Lgr5 stem cells are interspersed between terminally differentiated Paneth cells that are known to produce bactericidal products such as lysozyme and cryptdins/defensins. Single Lgr5-expressing stem cells can be cultured to form long-lived, self-organizing crypt-villus organoids in the absence of non-epithelial niche cells. Here we find a close physical association of Lgr5 stem cells with Paneth cells in mice, both in vivo and in vitro. CD24(+) Paneth cells express EGF, TGF-α, Wnt3 and the Notch ligand Dll4, all essential signals for stem-cell maintenance in culture. Co-culturing of sorted stem cells with Paneth cells markedly improves organoid formation. This Paneth cell requirement can be substituted by a pulse of exogenous Wnt. Genetic removal of Paneth cells in vivo results in the concomitant loss of Lgr5 stem cells. In colon crypts, CD24(+) cells residing between Lgr5 stem cells may represent the Paneth cell equivalents. We conclude that Lgr5 stem cells compete for essential niche signals provided by a specialized daughter cell, the Paneth cell.  相似文献   

18.
19.
Wnt signalling in stem cells and cancer   总被引:3,自引:0,他引:3  
Reya T  Clevers H 《Nature》2005,434(7035):843-850
The canonical Wnt cascade has emerged as a critical regulator of stem cells. In many tissues, activation of Wnt signalling has also been associated with cancer. This has raised the possibility that the tightly regulated self-renewal mediated by Wnt signalling in stem and progenitor cells is subverted in cancer cells to allow malignant proliferation. Insights gained from understanding how the Wnt pathway is integrally involved in both stem cell and cancer cell maintenance and growth in the intestinal, epidermal and haematopoietic systems may serve as a paradigm for understanding the dual nature of self-renewal signals.  相似文献   

20.
The generation of new neurons from neural stem cells is restricted to two regions of the adult mammalian central nervous system: the subventricular zone of the lateral ventricle, and the subgranular zone of the hippocampal dentate gyrus. In both regions, signals provided by the microenvironment regulate the maintenance, proliferation and neuronal fate commitment of the local stem cell population. The identity of these signals is largely unknown. Here we show that adult hippocampal stem/progenitor cells (AHPs) express receptors and signalling components for Wnt proteins, which are key regulators of neural stem cell behaviour in embryonic development. We also show that the Wnt/beta-catenin pathway is active and that Wnt3 is expressed in the hippocampal neurogenic niche. Overexpression of Wnt3 is sufficient to increase neurogenesis from AHPs in vitro and in vivo. By contrast, blockade of Wnt signalling reduces neurogenesis from AHPs in vitro and abolishes neurogenesis almost completely in vivo. Our data show that Wnt signalling is a principal regulator of adult hippocampal neurogenesis and provide evidence that Wnt proteins have a role in adult hippocampal function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号