首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
分别以Fe(NO_3)_3·9H_2O和FeSO_4·7H_2O为铁源,采用均相沉淀法和氧化-液相沉淀法制备了两种不同形貌的FePO_4粉体,再以FePO_4为前驱体,与LiOH·H_2O、蔗糖混合,采用碳热还原法合成了LiFePO_4正电极材料.用XRD和SEM对所制备的FePO_4粉体进行结构和表面形貌表征,测试了LiFePO_4样品的充放电性能.XRD和SEM测定结果表明,采用均相沉淀法制备的FePO_4为六方晶系纯相,颗粒形貌为圆片状,颗粒大小均匀;而液相氧化法制备的FePO_4也为六方晶系纯相,但颗粒形貌无规则.由圆片状FePO_4和无规则FePO_4所合成的LiFePO_4的颗粒形貌与其前驱体相同.充放电测试表明在0.5C下圆片状LiFePO_4的首次放电比容量为140 mAh/g,无规则LiFePO_4的首次放电比容量为89 mAh/g.经过50次循环后,前者的放电比容量仅下降1.43%,后者基本不变.  相似文献   

2.
介绍了一种将石墨烯(Graphite)引入锂离子电池正极材料磷酸铁锂(LiFePO_4)中获得LiFePO_4/graphite复合材料的制备方法。首先以碳酸锂、草酸亚铁、磷酸氢二铵和葡萄糖为原材料,采用高温固相法合成了碳包覆的LiFePO_4前躯体,再通过固相粉体混合的工艺加入不同百分比的石墨烯,制备出磷酸铁/石墨烯锂离子电池正极复合材料;对所制备的复合材料组装成纽扣电池进行性能测试;结果表明:复合材料的电化学性能显著提高,在0.1C放电倍率条件下,LiFePO_4+1wt%graphite复合材料的首次放电容量从LiFePO_4基体材料的131.75mAh/g提高到146.51mAh/g,LiFePO_4+1wt%graphite复合材料的充电性能和放电性能分别提高了5.8%和4.8%。  相似文献   

3.
使用不同体积比的水/乙二醇作为溶剂,pH调至5,通过水热法制备出纯相的LiFePO_4,将其与质量分数10%的葡萄糖混合烧结,得到了含碳量不同的LiFePO_4/C材料.对所得产物进行XRD,SEM,TEM以及电化学性能测试,研究了具有不同形貌的产物对其的电化学性能的影响.结果表明不同形貌的LiFePO_4/C材料的电化学性能差异较大,其中pH=5条件下,水/乙二醇体积比为1∶1时材料的放电比容量最好,0.1C倍率下首次放电比容量为146mAh/g,充放电循环50次后,放电比容量没有明显的衰减,10C倍率下放电比容量为68mAh/g,充放电循环50次后,容量未见明显的衰减.  相似文献   

4.
以NH4VO3和Fe(NO3)3为原料,通过液相沉淀法制备前驱体,分别在300℃和550℃热处理,成功制备出纳米颗粒状FeVO4材料.分别采用热分析(TG-DTA)、透射电镜(TEM)、X-射线衍射仪(XRD)、扫描电镜(SEM)对其进行表征,同时用恒流充放电循环对材料进行电化学性能测试.结果显示,经300℃热处理的FeVO4材料呈纳米颗粒状,粒径为几十纳米.在50mA/g放电电流密度下首次放电比容量为215mAh/g,40周循环后容量保持在170mAh/g左右.经循环伏安分析其脱-嵌锂机制,显示该材料充放电过程中同时发生了Fe和V的氧化还原反应,共同提供嵌锂容量.  相似文献   

5.
通过溶剂热方法制备了纯净的CuFeS2粉体,并分别以天然和合成的CuFeS2作为锂电池正极材料装配电池进行电化学性能测试.测试结果表明,合成的CuFeS2作为正极材料、碳纳米管作为导电剂装配的电池室温一次放电容量达到了1 300mAh/g,放电平台为1.75,1.50V;天然CuFeS2中含有C,O,Si,Al等杂质元素,室温一次放电容量为1 000mAh/g,放电平台以及放电曲线形状均与合成CuFeS2为正极材料时相似.CV曲线说明Li/CuFeS2电池在室温下具有循环潜力.400℃真空焙烧3h有利于去除所合成CuFeS2粉体表面的残留溶剂,降低电极片内阻.另外,研究了电池在不同放电倍率下的放电性能.  相似文献   

6.
以二氰二胺为氮掺杂剂,采用溶胶凝胶法制备了氮掺杂碳包覆LiFePO_4的复合材料,并且分析了氮掺杂量对电极材料结构与性能的影响。研究结果表明,柠檬酸和二氰二胺在高温下的原位分解使合成的LiFePO_4颗粒表面包覆了一层氮掺杂的碳膜,有效的增加了各颗粒间的电接触,改善了LiFePO_4的电化学性能。当氮掺杂量为0.35 wt%时,LiFePO_4@N_(0.35%)C样品具有最优良的电化学性能。在2.5~4.2 V的电压范围内,电极材料在0.1 C倍率下的首次放电比容量达到157.2 mAh/g,经过30个循环后放电容量基本不变。  相似文献   

7.
以FeSO_4、LiOH和NH_4H_2PO_4为原料,控制反应物物质的量之比n(Li~+)∶n(Fe~(2+))∶n(PO_4~(3+))=3∶1∶1,采用水热法制备磷酸铁锂(LiFePO_4)颗粒,并对合成工艺进行优化;以LiFePO_4为填料,将LiFePO_4加入聚酰亚胺(PI)凝胶材料中,采用高温热解工艺制备LiFePO_4改性聚酰亚胺凝胶碳化材料。通过傅里叶变换红外光谱仪(FT-IR)、X线衍射仪(XRD)、扫描电子显微镜(SEM)、比表面积孔隙分析仪及电化学工作站对LiFePO_4的结构、形貌及复合材料的电化学性能进行表征。LiFePO_4颗粒的最优制备条件如下:加料顺序为LiOH、NH_4H_2PO_4、抗坏血酸(C_6H_8O_6)、FeSO_4,FeSO_4的浓度为0.2 mol/L,n(C_6H_8O_6)/n(Fe~(2+))=0.5,反应温度为160℃,反应时间为3 h。结果表明:在最优条件下制备的LiFePO_4颗粒呈现规则的球型结构,一致性较好,表面较为光滑;以PI改性凝胶碳化材料作为电极,其比电容达到152.5 F/g,随着电流密度增加,比电容保持率为88.5%(从152.5 F/g变化到135 F/g),表现出较好的电化学稳定性。采用此电极材料构成的充放电装置,具有较小的内阻,且表现出较好的离子扩散效应。  相似文献   

8.
LiFePO4/C的制备及其电化学性能研究   总被引:1,自引:0,他引:1  
采用固相烧结法,在惰性气氛下制备了橄榄石型LiFePO4/C正极材料.通过充放电循环实验、循环伏安实验、交流阻抗、拉曼光谱等测试方法,研究了样品的优化制备条件与电化学性能的关系.研究表明,当以草酸亚铁为铁源时,720 ℃烧结的样品以1 C倍率电流充放电时,首次放电容量为113 mAh/g,50循环的放电容量为116 mAh/g,表现出优秀的循环稳定性.在30循环内,样品的电荷传递阻抗随着充放电循环的进行而减小.锂离子扩散系数为1.56×10-8 cm2/s.  相似文献   

9.
采用一步碳热还原法,以一种有机碳源为碳前驱体合成了单斜晶系的Li3V2(PO4)3/C复合材料. 主要研究了合成温度对材料性能的影响. 结果表明: 750~850 ℃时可以获得纯相的正极材料Li3V2(PO4)3;同时首次放电容量达到161 mAh/g;经过50次循环后,750 ℃下的容量保持率仍为83%,表明材料具有良好的循环稳定性能.  相似文献   

10.
采用高温固相法,以环氧树脂为还原剂合成锂离子电池正极材料Li3V2(PO4)3.通过X射线衍射分析和扫描电子显微镜对样品的晶体结构和微观形貌进行表征,并用恒电流充放电和循环伏安实验研究材料的电化学性能.结果表明所制备的Li3V2(PO4)3为结晶完善的单斜结构,颗粒分布均匀且粒径较小,0.2C时在3.0V~4.3V电压范围的首次放电比容量为126.9mAh/g,30次循环后的比容量为126.0mAh/g,容量保持率达到99.29%.  相似文献   

11.
通过固相法合成了LiFePO4 /聚并苯(PAS)复合材料.纯的LiFePO4电导率仅为(0.1~1)×10-9 S/cm,合成LiFePO4/PAs复合材料电导率为2.0 S/cm,复合材料的电导率提高了10个数量级.LiFePO4/PAS复合材料具有优异的电化学性能,在室温1C倍率下首次放电容量为140 mA·h/g,经过200次循环后容量仍保持最初容量的97.14%.说明通过包覆PAS材料极大地提高了LiFePO4的大电流充、放电容量和循环性能.  相似文献   

12.
溶胶凝胶法制LiFePO4作为锂电池正极材料的研究   总被引:2,自引:0,他引:2  
采用固相法和溶胶凝胶法(sol-gel)成功地制备出了L iFePO4.并利用X射线衍射、扫描电镜以及电化学测试等手段,系统地研究了合成条件和方法对材料的结构和电化学性能的影响.研究表明,使用sol-gel方法和固相法,制备出单一相的L iFePO4,其比容量分别为130mAh/g和80mAh/g.采用sol-gel方法制备的L iFePO4作为电池正极材料具有高的比容量和优良的电化学性能.  相似文献   

13.
以曲拉通100作表面活性剂,用超声波法制备了球形度较好、平均粒径为10μm的球形Li3PO4。以球形Li3PO4为前驱体制备了部分球形的LiFePO4,并对其电化学性能进行了研究。由该法制备的LiFePO4振实密度为1.20 g/cm3,较其他方法制备的LiFePO4密度有所提高。  相似文献   

14.
0 IntroductionLik-eito nsh baartete irnie sre (ceLnItB sy)ea hrasv ien r athpiedl pyo retxapbalend eeldec tthroeinric m daer--vices and are also considered as preferred power sources forelectric vehicles[1 ,2]. These require the LIBs to be made ofcheaper ,safer andenvironmentallyfriendly materials ,particu-larly of the cathode materials .In past fewyears ,LiFePO4hasbeen extensively studied as the most promising cathode mate-rial due toits sufficient cycling capacity,lowcost andthermalstabi…  相似文献   

15.
研究了4,4′,4′′,4′′′-四(正丙氧基羰基)酞菁钴(Ⅱ)[CoPc(COOC3H7)4〗分别在由正十六烷基-2-羟基-3-氯丙基磷酸一氢酯(C16-AHCP)所构成的双分子膜泡囊、十二烷基硫酸纳(SDS)胶束、十六烷基三甲基溴化铵(CTAB)胶束、聚乙二醇辛基苯基醚(Triton(x-100))胶束、无水乙醇和无水苯中催化分子氧氧化巯基乙醇的反应.利用微量呼吸检压仪测定体系中的耗氧量来确定催化反应速度,用紫外-可见吸收光谱研究了影响催化反应速度的因素.结果表明,CoPc(COOC3H7)4的催化活性顺序为在双分子膜泡囊无水苯CTAB胶束Triton(x-100)胶束SDS胶束无水乙醇,催化活性与[CoPc(COOC3H7)4在介质中的存在形式有关.  相似文献   

16.
本文研究了以磷酸氢二铵、硫酸锌、硫酸亚铁和氨为原料制取锌、铁混合缓溶微肥的最佳工艺条件,认为反应温度应控制在90℃,P/(Fe+Zn)摩尔比取1.1,Zn/Fe摩尔比取1~2,反应过程应先加硫酸锌而后加硫酸亚铁。硫酸锌和硫酸亚铁由化肥厂废触媒等制取。由最优工艺条件小试结果表明,磷的转化率大于90%.锌和铁的转化率大于95%。该产品可作烟草专用肥的基础肥料。  相似文献   

17.
利用水热法合成出具有Dawson结构的无机-有机杂化的功能性配合物Cd3[4,4′-H2bipy]8·(P2W18O62)·11H2O,并得到该晶体的最佳反应条件,利用元素分析、IR、UV光谱和X-射线粉末衍射等测试技术对其进行表征.  相似文献   

18.
采用液相沉淀法制备了球形NH4FePO4, 通过XRD、SEM、FTIR等对其进行了测试表征,结果表明:该材料具有结晶完全的正交晶系结构,形貌为规则的球形颗粒,平均粒径为1.6 μm,振实密度为1.73 g/cm3.  相似文献   

19.
锂基陶瓷是氚增殖材料的主要选材料之一。以正硅酸乙酯和硝酸锂为主要原料,采用溶胶-凝胶法合成了Li4SiO4陶瓷粉体,利用湿法成球技术制备了毫米级Li4SiO4陶瓷微球。结果表明:PH值对Li4SiO4陶瓷粉体的相结构有较大影响。在中性和酸性条件下得到的是Li4SiO4与Li2SiO3的混合相,而在碱性条件下得到的是纯Li4SiO4相。凝胶剂质量分数在10%的时候能得到球形度跟强度都好的陶瓷球。950℃为Li4SiO4陶瓷微球的最佳烧结温度,此时烧结的陶瓷球的密度最大,为理论密度的85.48%。该研究为获得低成本、高性能的锂基陶瓷微球提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号