首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
将Mm(NiCoMnAl)5合金与CNTs均匀混合后机械球磨制备Mm(NiCoMnAl)5/10wt.%CNTs复合储氢合金.用X射线衍射(XRD)、扫描电镜(SEM)和电化学测试方法研究复合合金的结构和电化学性能.结果表明:Mm(NiCoMnAl)5/10wt.%CNTs复合合金主要具有CaCu5结构,在其表面键合了众多的CNTs.随球磨时间增大,复合合金中CNTs含量逐渐减少.复合合金的最大放电容量、循环稳定性和高倍率放电性能随球磨时间的增大呈现出先增大后减小的变化规律,其中球磨时间为5h时,最大放电容量达到最大值291.9mAh/g;当球磨时间为3h时,合金电极经60次充放电循环后的容量保持率高达91.2%,且具有最佳的高倍率放电性能.  相似文献   

2.
在不同成型压力下制备了Mm(NiCoMnAl)5/5%Mg2Ni复合储氢合金电极,研究了成型压力对合金电极的活化性能、最大放电容量、放电特性、循环稳定性和高倍率放电性能的影响规律.结果表明,成型压力对合金电极的活化性能基本无影响,合金电极的最大放电容量、放电特性和循环稳定性随成型压力的增大均呈现出先增大后减小的变化规律,合金电极的高倍率放电性能随成型压力的增大而变小.综合考虑,在成型压力为11t时,合金电极展示了最佳的综合电化学性能,电化学性能的改善主要归因于合金电极的电荷转移速度的加快.  相似文献   

3.
研究了两种不同配比La-Ni-Al的储氢合金电极的电化学性能。测试结果表明,LaNi4.061Al0.222储氢合金的最大放电容量为292mAh·g1(303 K),且具有较好的倍率性能。同时研究了Zr的添加对LaNi4.061Al0.222Zr(=0-0.2)储氢合金电极电化学性能的影响。结果表明,=0.2时,储氢合金电极具有最大的放电容量309.9mAH·g-1和高倍率放电性能。  相似文献   

4.
采用磁悬浮感应熔炼法和快淬法制备了Mm0.3Ml0.7Ni3.55Co0.75Mn0.4Al0.3稀土储氢合金,系统研究了快淬速度对合金微结构和电化学性能的影响.X射线衍射(XRD)及扫描电镜(SEM)分析表明,快淬态合金中出现了新相LaNi3和La2Ni3,且LaNi3和La2Ni3相含量随快淬速度的增大而增大.电化学性能测试表明,合金的放电特性和最大放电容量随快淬速度的增大呈现出先变好后变坏的变化规律,15m/s快淬态合金的放电特性和最大放电容量达到最佳.此外,恰当的快淬速度能明显改善合金的循环稳定性.  相似文献   

5.
在电化学过程中Mg2Ni储氢合金表面极易形成钝化层,这是降低合金电极储氢动力学和放电容量的主要原因。本研究中以Zn元素替代Ni熔炼制备了Mg2Ni0.75Zn0.25合金,分析Zn元素在碱性溶液中的溶解对合金电极放电容量的影响机制。结果表明:Mg2Ni合金的主相为Mg2Ni,而添加Zn的Mg2Ni0.75Zn0.25合金中形成了新的物相MgZn2。电化学反应后,Mg2Ni合金表面被钝化层覆盖导致合金电极放电容量很低(为16.96 mA·h/g),而Mg2Ni0.75Zn0.25合金晶界处出现了许多Zn溶解后形成的凹槽和裂纹,其合金电极最大放电容量达到了52.22 mA·h/g。可以推断,在电化学过程中Zn和MgZn2的溶解和脱落降低了Mg2...  相似文献   

6.
通过感应熔炼方法制备了稀土-镁-镍基储氢合金Ml0.88Mg0.12Ni3.0Mn0.10Co0.55Al0.10(Ml代表富镧混合稀土).采用XRD和SEM分析了合金的微观结构,发现该合金主要由CaCu5型相、Ce2Ni7型相和Pr5Co19型相组成.电化学测试结果表明:合金的放电容量可以达到386 mA·h/g,比商品AB5型合金(332 mA·h/g)高出16.3%;在1 100 mA/g的放电电流密度下,合金的高倍率放电性能可以达到62%,高于商品AB5型合金(45%);充放电循环300次后,合金的放电容量降低到315 mA·h/g,为最大放电容量的81.5 %.  相似文献   

7.
采用熔盐覆盖法制备了LaMg12型储氢合金,利用高能球磨对其进行Y2O3的掺杂,采用X射线衍射来分析合金的相结构,利用Land充放电仪测试合金的电化学性能. 结果表明:Y2O3掺杂能改善LaMg12储氢合金的电化学性能,其中球磨20 h对首次放电容量改善最明显,球磨40 h对循环性能影响最大. 综合而言,球磨40 h对合金性能的改善效果最好.  相似文献   

8.
用KOH碱液处理储氢合金ZrV0.5Mno.5Ni,讨论碱液浓度、温度、浸泡时间对合金活化性能的影响.实验发现储氢合金电极的活化性能随碱液浓度增大、温度升高以及浸泡时间的延长得到改善,主要由于KOH的强腐蚀性使合金表面由富Zr层转化为富Ni层,为氢的吸附离解起到催化作用,总结出最佳KOH处理液的实验参数6mol/L、80℃、浸泡24h,在此条件下合金电极循环两周即达最大放电容量.  相似文献   

9.
采用单辊甩带快速凝固方法制备过化学计量比稀土贮氢合金La1-xCexNi4.17Mn0.93Al0.1Fe0.4(AB5.6型,x=0~0.5),研究Ce元素部分替代La后对合金微观结构、储氢及电化学性能的影响.XRD分析及储氢性能测试结果表明,快淬过化学计量比合金的相组织均为过饱和CaCu5型结构单相,合金晶胞体积与Ce质量分数基本呈线性关系,其中合金的储氢量随Ce质量分数的增加而减小,而吸放氢平台压力增高.电化学测试和分析结果表明,随Ce质量分数的增加,合金电极的活化性能和放电容量有所降低,但电极循环寿命得到明显提高.当x=0、0.5时,合金电极的最大放电容量为328.9、305.4 mAh/g;当x≥0.3时,经100次循环后,合金电极容量保持率S100由x=0时的80%提高至93%~96%;合金电极的高倍率放电性能(HRD)随Ce质量分数的增加呈先减小后增加的趋势.  相似文献   

10.
采用镁粉和铝粉为原料,通过高能球磨方法制备了Mg17Al12纳米晶/非晶储氢合金,系统研究了球磨时间对合金微结构和储氢性能的影响.结果表明:球磨时间对Mg17Al12合金的微结构和储氢性能有显著影响,随着球磨时间t从10 h延长到100 h,合金发生从晶态(t≤50 h)到纳米晶态(t=70 h)再到非晶态(t=100 h)的结构转变;样品的平均颗粒尺寸随着球磨时间的增加先减小后增大;球磨时间为30、70和100 h后的Mg17Al12合金在350℃时的最大储氢量(氢的质量分数)分别为4.03%、4.27%和4.18%,而相同条件下铸态Mg17Al12合金的最大储氢量只有2.85%;球磨时间为70 h的Mg17Al12纳米晶合金在200、280和320℃的储氢量分别为1.07%、3.02%和4.07%;球磨时间为100 h的Mg17Al12非晶合金在200℃时30 min内的吸氢量(氢的质量分数)可达到2.84%,分别为相同条件下纳米晶合金和铸态合金的2.7倍和5.1倍.  相似文献   

11.
提出用放电等离子烧结技术(SPS)改善La-Mg-Ni贮氢电极合金的综合电化学性能.所选La-Mg-Ni贮氢电极合金为La0.7Mg0.3Ni2.5Co0.5.实验结果表明,用SPS和真空中频感应熔炼制备得到的合金具有近似的最大放电容量.SPS技术增强了合金电极的循环寿命:在经过150次的充放电循环后,用SPS法制备的La0.7Mg0.3Ni2.5Co0.5合金的容量保持率为61.8%;而感应熔炼法得到的合金电极的容量保持率仅为39.6%.同时用SPS技术使合金的放电中值电压增加,放氢平台变宽,平台倾斜度减小.  相似文献   

12.
通过电化学极化曲线方法和电化学交流阻抗谱(EIS)技术对比研究了不同晶粒尺寸的Ag-50Ni合金在不同浓度的H3PO4介质中的耐腐蚀性能。结果表明:2种尺寸的Ag-50Ni合金在不同浓度的H3PO4介质中主要呈单容抗弧特征,其中纳米尺寸的Ag-50Ni合金在H3PO4浓度分别为0.0,0.1及0.5 mol/L中呈双容抗弧特征,表明电极表面腐蚀受电化学反应控制。随着H3PO4浓度的增加,合金的自腐蚀电位向负方向移动,传递电阻逐渐减小,腐蚀电流密度逐渐增大,表明腐蚀速度加快。在同一种浓度腐蚀介质中,常规尺寸Ag-50Ni合金的腐蚀电流密度低于纳米尺寸Ag-50Ni合金,表明晶粒细化后抗腐蚀性能降低。  相似文献   

13.
La-Mg-Ni系A2B7型贮氢合金表面包覆铜及其电化学性能   总被引:2,自引:0,他引:2  
以A2B7型贮氢合金La1.5Mg0.5Ni7为研究对象,研究未包覆和表面包覆Cu以及对包覆铜的贮氢合金进行再包覆Ni、Co处理的合金电极电化学性能.实验结果表明,表面包覆Cu和Cu-Ni后的贮氢合金电极循环稳定性有所提高,而包覆Cu-Co的合金电极稳定性较差,但电极容量有所提高.线性极化扫描和电化学阻抗图谱分析结果表明,包覆Cu、Cu-Co及Cu-Ni处理改善合金电极的交换电流密度I0,降低电化学阻抗,说明包覆处理改善合金表面的电催化活性,加快合金表面电荷的迁移速率,从而提高高倍率放电能力.  相似文献   

14.
研究湿法球磨结合KBH4表面改性一步处理法对AB5型贮氢合金晶体结构和电化学性能的影响,并比较此新方法和先湿法球磨制粉后表面处理两步法制备的贮氢合金粉的电化学性能。研究结果表明:采用此新方法能显著提高贮氢合金的综合性能;当KBHt的浓度为0.08mol/L时,利用此法制得合金粉的晶体主相仍为LaNi5相,出现Al2Os杂相;其电化学容量变化不大;达到最大容量的活化次数从12降低到5;放电中值电压从1.22V升高到1.28V;倍率为2C的放电效率从79.0%提高到86.1%,容量保持率S200从74%提高到86%。  相似文献   

15.
用快淬技术制备Mg2-xLaxNi(x=0,0.2,0.4,0.6)贮氢合金,用XRD,SEM和HRTEM分析合金的微观组织结构;测试合金的气态及电化学贮氢动力学。结果表明:快淬二元Mg2Ni合金具有典型的纳米晶结构,而快淬La替代合金明显地具有非晶结构,La替代Mg提高Mg2Ni型合金的非晶形成能力。La替代Mg明显地改变Mg2Ni型合金的相组成,当x=0.4时,合金的主相改变为(La,Mg)Ni3+LaMg3。快淬及La替代明显影响合金的气态及电化学贮氢动力学,La替代使合金的吸氢动力学先降低后增加,但使合金的气态脱氢及电化学贮氢动力学先增加后降低。快淬对合金气态及电化学贮氢动力学的影响与合金的成分相关,对于La0.4合金,合金的气态吸氢动力学随淬速的增加先增加后减小,其放氢动力学随淬速的增加而增加。  相似文献   

16.
采用感应熔炼结合粉末烧结两步法制备了La_(0.7)Mg_(0.3-x)Ca_xNi_(2.5)Co_(0.5)(x=0~0.15)储氢合金,并对合金的放电容量衰退机理进行了研究.研究结果显示随着Ca含量的增加,合金的相结构没有发生明显变化,只是晶胞参数逐渐增大,即Ca主要替代了超晶格结构AB2结构单元中的Mg,但在AB5结构单元中少量的Ca恰恰对合金的放电容量产生了重要的影响.Ca在AB2和AB5两种结构单元中的存在会降低储氢过程中晶胞内部的膨胀应力,Ca的溶解能够抑制Mg的腐蚀,生成微溶于水的腐蚀产物,并提高了合金表面具有催化活性的Ni含量,改善了合金的循环寿命.较高的Ca含量会严重破坏合金的相结构,生成过量的腐蚀产物因不能完全溶于水而在合金表面形成包覆层,阻碍了电极反应,造成合金循环过程中放电容量的急剧下降.  相似文献   

17.
利用动电位扫描法,结合电化学交流阻抗技术研究了用传统电弧熔炼制备的Cu^-50Cr合金在不同Cl^-浓度介质中的腐蚀电化学行为.结果表明:随Cl^-浓度的增加,自腐蚀电位均出现不同程度的负移,腐蚀电流增大,腐蚀速度加快;Cu-50Cr合金在中性Na2S04溶液中未出现钝化现象,加入Cl^-后,出现了钝化现象,但钝化区间很窄.从交流阻抗谱及拟合结果分析得知:在0.05mol/LNa28O4和0.05mol/L Na2SO4+0.02mol/L NaCl腐蚀介质中交流阻抗谱呈单容抗弧特征,没有出现Warburg阻抗,表明电极表面的腐蚀受电化学反应控制,随Cl^-浓度增加,开始出现Warburg阻抗,表明腐蚀过程由电化学反应控制转化为扩散控制.随Cl^-浓度的增加,容抗弧减小,电荷传递电阻减小,腐蚀速度加快.  相似文献   

18.
采用机械合金化通过控制球磨时间制备不同晶粒尺寸的三元合金粉末,然后分别以真空热压工艺制备常规晶粒尺寸和纳米晶粒尺寸的Cu-20Ag-30Cr合金块状合金。并且利用PARM273A和M5210电化学综合测试系统对两种合金进行电化学腐蚀测试,通过测定电化学极化曲线和交流阻抗谱研究了常规晶粒尺寸和纳米晶粒尺寸的Cu-20Ag-30Cr合金在不同浓度HCl溶液中的腐蚀电化学行为。结果表明随着HCl浓度的增加,腐蚀电流密度随之持续增大,自腐蚀电位持续负移,传递电阻持续减小,表明合金的腐蚀程度加剧,合金的耐腐蚀性能减弱;在相同浓度的HCl溶液中,纳米晶粒尺寸的Cu-20Ag-30Cr合金的腐蚀电流密度明显高于高于Cu-20Ag-30Cr合金,表明经过晶粒细化合金腐蚀速度加快,其耐腐蚀性能下降。  相似文献   

19.
研究了热处理时间对贮氢电极合金La0.7Mg0.3Ni2.45Co0.75Mn0.1Al0.2的微结构与电化学性能的影响。XRD分析结果表明,所有合金均由(La,Mg)Ni3与LaNi5两相构成,热处理并没有使该贮氢合金发生相变。电化学研究结果表明,随着热处理时间的延长,合金电极的最大放电容量与循环稳定性能均得到明显改善,而高倍率放电性能却逐渐恶化。  相似文献   

20.
在氩气保护下,采用悬浮熔炼法制备La0.7Mg0.3Ni3.4(Al0.3Co0.7)x(x=0,0.2,0.4,0.6)储氢合金,用X射线衍射仪测试相组成,并用MDI Jade 5.0软件分析相组成和晶胞参数,用开口三电极法测试电极电化学性能。结果表明,合金相主要由LaNi5、LaMg2Ni9、La2Ni7和LaNi2.28相组成,随着合金中Al和Co含量的增加,合金放氢平台压下降,最大吸氢量为1.43%(x=0),合金电极最大放电容量Cmax为381mA.h.g-1(x=0),合金电极100个充放循环后的容量保持率S100从53.0%(x=0)增加到57.1%(x=0.3),循环稳定性增强。当x=0.1时,合金电极的电化学动力学性能较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号