首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 142 毫秒
1.
Toll样受体(Toll-like receptors, TLRs)家族存在于所有活的多细胞生物中。研究表明,TLRs在对机体天然免疫、识别病原体方面包括感染性、自身免疫性、过敏性、炎症和癌症在内的多种疾病的发病机制中发挥了非常重要的作用。简要介绍了TLRs家族受体相关的常见疾病,结合已有的成果对相关疾病相关受体的研究方法及应用现状进行阐述。最后,对Toll样受体为人类克服相关疾病的未来发展方向进行展望。  相似文献   

2.
Ag-NORs多态性及其在动物遗传育种研究中的应用   总被引:3,自引:0,他引:3  
对动物的Ag-NORs多态性作了系统的论述了,同时阐述了Ag-NORs多态性作为遗传标记在动物遗传育种研究中的应用情况。  相似文献   

3.
对山羊乳中αs-酪蛋白、β-酪蛋白、β-乳球蛋白等基因位点的遗传多态性作了系统地论述,同时,阐述了山羊乳蛋白遗传多样性作为遗传标记,在山羊起源、进化、亲缘关系、经济形状、生产性能等领域中的应用及山羊乳蛋白与疾病关系等的研究现状,并对其应用前景作了展望。  相似文献   

4.
实验用猫自19世纪末用于科学研究,现已广泛用于医药研发等各个领域,并作为人类遗传性疾病和感染性疾病的动物模型越来越受重视。猫的质量(尤其是遗传质量)对研究结果的准确性,重复性以及科学性有重要的影响。定期开展遗传质量检测,可有效避免实验用猫的种质退化、遗传漂移,减少实验结果误差等。随着生化标记和DNA分子标记的出现,为了解猫的遗传结构提供了更为简便可靠的方法。本文主要就生化标记和DNA分子标记在研究猫的遗传结构和多态性中的研究现状以及存在的问题进行了探讨。  相似文献   

5.
邱天 《龙岩学院学报》2011,29(Z1):62-64,90
研究了Toll样受体(TLRs)与免疫的基本关系,运动与营养对TLRs表达的影响。指出TLRs与人体的各种功能系统关系密切,通过长期运动与适当的营养手段可以良性降低TLRs的表达,进而提高运动员以及健身群众的身体免疫机能。  相似文献   

6.
中国猛禽类线粒体DNA遗传多态性研究进展   总被引:1,自引:0,他引:1  
鸟类线粒体DNA的研究在种群生物学和进化生物学研究方面越来越显示出重要的作用,特别是在遗传多态性和基因流研究方面更具特殊意义。简要回顾了鸟类线粒体DNA的研究历史,并分析了中国猛离线粒体DNA遗传多态性的研究现状及进展,要点:1.猛禽类线粒体基因组大小存在遗传多态性,2:猛禽类线粒体DNA的进化速率与哺乳类相同,3;种间或种内存在丰富的遗传变异;4.不同地理种群存在mtDNA克隆群的连续性。  相似文献   

7.
采用ESTMS20,SW2570和S0002等3个微卫星标记对长白猪进行了遗传多样性的研究。结果发现,3个卫星标记在长白猪中均具有多态性,遗传杂合度分别为0.69,0.70和0.41,多态信息含量分别为0.64,0.68和0.38。以上结果表明,这3个微卫星标记在长白猪群体中属于高度多态性座位,可以用于长白猪遗传多样性的评估。  相似文献   

8.
DNA甲基化是表观遗传修饰的基本方式之一,在调控植物基因表达、抵御逆境胁迫、防御外源基因侵入等方面具有重要作用,随着对DNA甲基化研究的深入,在AFLP技术基础上衍生的DNA甲基化敏扩增多态性技术(MSAP),以其高通量、高多态性、低成本、易操作等优点,在作物遗传育种研究的各个领域得到广泛应用。本文综述了该技术的基本原理与操作,及其在作物遗传研究中的应用现状。  相似文献   

9.
本文概述了国内外对牦牛血液蛋白遗传多态性研究的现状。  相似文献   

10.
采用DNA测序技术对原产于我国新疆伊犁河谷地区的杏(Armenica vulgaris Lamarck)进行了群体样本测序.对所获得的野生杏单拷贝核基因Adh1序列进行了分析.结果表明:不同野杏居群的核苷酸多态性和单倍型多态性没有显著差异.Gapdh基因序列的分析显示,各野生杏居群的核苷酸多态性和单倍型多态性相对较低,特别是巩留县核桃沟的野生杏居群,其核苷酸多态性和单倍型多态性均为0.此外,AMOVA分析结果表明,遗传变异主要发生在居群内,而居群之间没有明显的遗传分化.研究结果不仅揭示了野生杏居群的遗传多样性,而且为杏的遗传资源研究保护提供了科学依据.  相似文献   

11.
Kim YM  Brinkmann MM  Paquet ME  Ploegh HL 《Nature》2008,452(7184):234-238
Signalling by means of toll-like receptors (TLRs) is essential for the development of innate and adaptive immune responses. UNC93B1, essential for signalling of TLR3, TLR7 and TLR9 in both humans and mice, physically interacts with these TLRs in the endoplasmic reticulum (ER). Here we show that the function of the polytopic membrane protein UNC93B1 is to deliver the nucleotide-sensing receptors TLR7 and TLR9 from the ER to endolysosomes. In dendritic cells of 3d mice, which express an UNC93B1 missense mutant (H412R) incapable of TLR binding, neither TLR7 nor TLR9 exits the ER. Furthermore, the trafficking and signalling defects of the nucleotide-sensing TLRs in 3d dendritic cells are corrected by expression of wild-type UNC93B1. However, UNC93B1 is dispensable for ligand recognition and signal initiation by TLRs. To our knowledge, UNC93B1 is the first protein to be identified as a molecule specifically involved in trafficking of nucleotide-sensing TLRs. By inhibiting the interaction between UNC93B1 and TLRs it should be possible to achieve specific regulation of the nucleotide-sensing TLRs without compromising signalling via the cell-surface-disposed TLRs.  相似文献   

12.
Toll样受体家族(TOU likereceptors,TLRs)是先天性免疫系统进化过程中形成的非常保守的模式识别受体家族,Toll样受体2(T011-likereceptors2,TLR2)是已经克隆的Toll样受体家族中表达范围最广,识别病原微生物种类最多的成员。它可单独或协同其他Toll样受体家族成员完成对病原体相关分子模式的识别,触发机体对致病微生物的级联免疫应答,尤其是针对细胞毒素的抗炎症反应具有重要的作用,已经成为多种疾病治疗的新靶点。文章对N-SL动物TLR2的分布,结构特征,配体识别,信号转导及其生物学功能的最新研究进展进行了综述。  相似文献   

13.
Ewald SE  Lee BL  Lau L  Wickliffe KE  Shi GP  Chapman HA  Barton GM 《Nature》2008,456(7222):658-662
Mammalian Toll-like receptors (TLRs) 3, 7, 8 and 9 initiate immune responses to infection by recognizing microbial nucleic acids; however, these responses come at the cost of potential autoimmunity owing to inappropriate recognition of self nucleic acids. The localization of TLR9 and TLR7 to intracellular compartments seems to have a role in facilitating responses to viral nucleic acids while maintaining tolerance to self nucleic acids, yet the cell biology regulating the transport and localization of these receptors remains poorly understood. Here we define the route by which TLR9 and TLR7 exit the endoplasmic reticulum and travel to endolysosomes in mouse macrophages and dendritic cells. The ectodomains of TLR9 and TLR7 are cleaved in the endolysosome, such that no full-length protein is detectable in the compartment where ligand is recognized. Notably, although both the full-length and cleaved forms of TLR9 are capable of binding ligand, only the processed form recruits MyD88 on activation, indicating that this truncated receptor, rather than the full-length form, is functional. Furthermore, conditions that prevent receptor proteolysis, including forced TLR9 surface localization, render the receptor non-functional. We propose that ectodomain cleavage represents a strategy to restrict receptor activation to endolysosomal compartments and prevent TLRs from responding to self nucleic acids.  相似文献   

14.
Horng T  Barton GM  Flavell RA  Medzhitov R 《Nature》2002,420(6913):329-333
Mammalian Toll-like receptors (TLRs) function as sensors of infection and induce the activation of innate and adaptive immune responses. Upon recognizing conserved pathogen-associated molecular products, TLRs activate host defence responses through their intracellular signalling domain, the Toll/interleukin-1 receptor (TIR) domain, and the downstream adaptor protein MyD88 (refs 1-3). Although members of the TLR and the interleukin-1 (IL-1) receptor families all signal through MyD88, the signalling pathways induced by individual receptors differ. TIRAP, an adaptor protein in the TLR signalling pathway, has been identified and shown to function downstream of TLR4 (refs 4, 5). Here we report the generation of mice deficient in the Tirap gene. TIRAP-deficient mice respond normally to the TLR5, TLR7 and TLR9 ligands, as well as to IL-1 and IL-18, but have defects in cytokine production and in activation of the nuclear factor NF-kappaB and mitogen-activated protein kinases in response to lipopolysaccharide, a ligand for TLR4. In addition, TIRAP-deficient mice are also impaired in their responses to ligands for TLR2, TLR1 and TLR6. Thus, TIRAP is differentially involved in signalling by members of the TLR family and may account for specificity in the downstream signalling of individual TLRs.  相似文献   

15.
Role of toll-like receptors in regulatory functions of T and B cells   总被引:1,自引:0,他引:1  
Pathogens can find their ways to most sites in the host. Pathogen sensors, such as Toll-like receptors (TLRs), must be equally and broadly distributed on immune cells to combat them through innate and adaptive immunity. Most classes of TLRs are found in innate immune cells to obtain an immediate response against pathogens, but recent studies indicate that a number of TLRs are wildly expressed in T and B cells, suggesting TLRs also directly regulate adaptive immune responses. Due to the rapid increase of new information on the multiple roles of TLRs, in this paper we aim to review several main properties of TLRs and their direct role in T and B cells. This review consists of 6 parts: (i) Characteristics of Toll-like receptors (TLRs) and signaling; (ii) signalling pathways of TLRs; (iii) TLR expressions on human leukocytes; (iv) TLR expressions and functions in the Thl, CD4^+CD45RO^+ memory T cells and regulatory/suppressor T as well as B cell populations; (v) therapeutic potential of TLR agonists; (Vi) discussion and perspective. The latest findings and potential therapeutic applications are discussed. There is growing evidence supporting the concept that TLR activation contributes not only to innate immunity but also to adaptive immunity, including direct regulation of both T and B lymphocytes by TLRs.  相似文献   

16.
The Toll-like receptor (TLR) family has important roles in microbial recognition and dendritic cell activation. TLRs 7 and 9 can recognize nucleic acids and trigger signalling cascades that activate plasmacytoid dendritic cells to produce interferon-alpha (IFN-alpha) (refs 7, 8). TLR7/9-mediated dendritic cell activation is critical for antiviral immunity but also contributes to the pathogenesis of systemic lupus erythematosus, a disease in which serum IFN-alpha levels are elevated owing to plasmacytoid dendritic cell activation. TLR7/9-induced IFN-alpha induction depends on a molecular complex that contains a TLR adaptor, MyD88, and IFN regulatory factor 7 (IRF-7) (refs 10-14), but the underlying molecular mechanisms are as yet unknown. Here we show that IkappaB kinase-alpha (IKK-alpha) is critically involved in TLR7/9-induced IFN-alpha production. TLR7/9-induced IFN-alpha production was severely impaired in IKK-alpha-deficient plasmacytoid dendritic cells, whereas inflammatory cytokine induction was decreased but still occurred. Kinase-deficient IKK-alpha inhibited the ability of MyD88 to activate the Ifna promoter in synergy with IRF-7. Furthermore, IKK-alpha associated with and phosphorylated IRF-7. Our results identify a role for IKK-alpha in TLR7/9 signalling, and highlight IKK-alpha as a potential target for manipulating TLR-induced IFN-alpha production.  相似文献   

17.
Many successful vaccines induce persistent antibody responses that can last a lifetime. The mechanisms by which they do so remain unclear, but emerging evidence indicates that they activate dendritic cells via Toll-like receptors (TLRs). For example, the yellow fever vaccine YF-17D, one of the most successful empiric vaccines ever developed, activates dendritic cells via multiple TLRs to stimulate proinflammatory cytokines. Triggering specific combinations of TLRs in dendritic cells can induce synergistic production of cytokines, which results in enhanced T-cell responses, but its impact on antibody responses remain unknown. Learning the critical parameters of innate immunity that program such antibody responses remains a major challenge in vaccinology. Here we demonstrate that immunization of mice with synthetic nanoparticles containing antigens plus ligands that signal through TLR4 and TLR7 induces synergistic increases in antigen-specific, neutralizing antibodies compared to immunization with nanoparticles containing antigens plus a single TLR ligand. Consistent with this there was enhanced persistence of germinal centres and of plasma-cell responses, which persisted in the lymph nodes for >1.5 years. Surprisingly, there was no enhancement of the early short-lived plasma-cell response relative to that observed with single TLR ligands. Molecular profiling of activated B cells, isolated 7 days after immunization, indicated that there was early programming towards B-cell memory. Antibody responses were dependent on direct triggering of both TLRs on B cells and dendritic cells, as well as on T-cell help. Immunization protected completely against lethal avian and swine influenza virus strains in mice, and induced robust immunity against pandemic H1N1 influenza in rhesus macaques.  相似文献   

18.
Signal transduction through Toll-like receptors (TLRs) originates from their intracellular Toll/interleukin-1 receptor (TIR) domain, which binds to MyD88, a common adaptor protein containing a TIR domain. Although cytokine production is completely abolished in MyD88-deficient mice, some responses to lipopolysaccharide (LPS), including the induction of interferon-inducible genes and the maturation of dendritic cells, are still observed. Another adaptor, TIRAP (also known as Mal), has been cloned as a molecule that specifically associates with TLR4 and thus may be responsible for the MyD88-independent response. Here we report that LPS-induced splenocyte proliferation and cytokine production are abolished in mice lacking TIRAP. As in MyD88-deficient mice, LPS activation of the nuclear factor NF-kappaB and mitogen-activated protein kinases is induced with delayed kinetics in TIRAP-deficient mice. Expression of interferon-inducible genes and the maturation of dendritic cells is observed in these mice; they also show defective response to TLR2 ligands, but not to stimuli that activate TLR3, TLR7 or TLR9. In contrast to previous suggestions, our results show that TIRAP is not specific to TLR4 signalling and does not participate in the MyD88-independent pathway. Instead, TIRAP has a crucial role in the MyD88-dependent signalling pathway shared by TLR2 and TLR4.  相似文献   

19.
The immune system consists of two evolutionarily different but closely related responses, innate immunity and adaptive immunity. Each of these responses has characteristic receptors-Toll-like receptors (TLRs) for innate immunity and antigen-specific receptors for adaptive immunity. Here we show that the caspase recruitment domain (CARD)-containing serine/threonine kinase Rip2 (also known as RICK, CARDIAK, CCK and Ripk2) transduces signals from receptors of both immune responses. Rip2 was recruited to TLR2 signalling complexes after ligand stimulation. Moreover, cytokine production in Rip2-deficient cells was reduced on stimulation of TLRs with lipopolysaccharide, peptidoglycan and double-stranded RNA, but not with bacterial DNA, indicating that Rip2 is downstream of TLR2/3/4 but not TLR9. Rip2-deficient cells were also hyporesponsive to signalling through interleukin (IL)-1 and IL-18 receptors, and deficient for signalling through Nod proteins-molecules also implicated in the innate immune response. Furthermore, Rip2-deficient T cells showed severely reduced NF-kappaB activation, IL-2 production and proliferation on T-cell-receptor (TCR) engagement, and impaired differentiation to T-helper subtype 1 (TH1) cells, indicating that Rip2 is required for optimal TCR signalling and T-cell differentiation. Rip2 is therefore a signal transducer and integrator of signals for both the innate and adaptive immune systems.  相似文献   

20.
Toll-like receptors (TLRs) and NK cell receptors are the most important receptor superfamilies in innate immunity. TLRs act as the sensor of external pathogens, while NK cells detect alterations in endogenous protein expression on target cells through activating and inhibitory receptors. Accumulating data has demonstrated that TLRs and NK cell receptors can coordinate and regulate each other during immune responses, which contributes to the initiation of innate response and the priming of adaptive responses. TLRs can activate NK cell function directly or with the help of accessory cells in a cytokine or cell-to-cell contact dependent manner. More understanding of the recognition of innate receptors and interactions between them may provide important insights into the design of effective strategies to combat tumor and microbial infections. In this review, we summarize how TLRs and NK cells discriminate the self or non-self components respectively. And importantly, we pay more attention to the role of TLR sig-naling in induction of NK cell activation, responses and the crosstalk between them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号