首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Effects of ATP and vanadate on calcium efflux from barnacle muscle fibres   总被引:3,自引:0,他引:3  
M T Nelson  M P Blaustein 《Nature》1981,289(5795):314-316
Calcium ions carry the inward current during depolarization of barnacle muscle fibres and are involved in the contraction process. Intracellular ionized calcium ([Ca2+]i) in barnacle muscle, as in other cells, is kept at a very low concentration, against a large electrochemical gradient. This large gradient is maintained by Ca2+ extrusion mechanisms. When [Ca2+]i is below the contraction threshold, Ca2+ efflux from giant barnacle muscle fibres is, largely, both ATP dependent and external Na+ (Na+0) dependent (see also refs 5,6). When [Ca2+]i is raised to the level expected during muscle contraction (2-5 muM), most of the Ca2+ efflux from perfused fibres is Na0 dependent; as in squid axons, this Na+0-dependent Ca2+ efflux is ATP independent. Orthovanadate is an inhibitor of (Na+ + K+) ATPase and the red cell Ca2+-ATpase. We report here that vanadate inhibits ATP-promoted, Na+0-dependent Ca2+ efflux from barnacle muscle fibres perfused with low [Ca2+]i (0.2-0.5 microM), but has little effect on the Na+0-dependent, ATP-independent Ca2+ efflux from fibres with a high [Ca]i (2-5 microM). Nevertheless, ATP depletion or vanadate treatment of high [Ca2+]i fibres causes an approximately 50-fold increase of Ca2+ efflux into Ca2+-containing lithium seawater. These results demonstrate that both vanadate and ATP affect Ca2+ extrusion, including the Na+0-dependent Ca2+ efflux (Na-Ca exchange), in barnacle muscle.  相似文献   

2.
J H Kaplan  R J Hollis 《Nature》1980,288(5791):587-589
Coupled active transport of Na+ and K+ across cellular plasma membranes is mediated by (Na+ + K+)-stimulated Mg2+-dependent ATPase. Active cation transport by this Na pump involves a cyclic Na-dependent phosphorylation of the enzyme by intracellular ATP and hydrolytic dephosphorylation of the phosphoenzyme, stimulated by K+ (ref. 1). In human red blood cells, skeletal muscle and squid axons, replacement of extracellular K by Na results in a ouabain-sensitive efflux of Na coupled to an influx of extracellular Na. There is apparently no net Na movement nor net hydrolysis of ATP. The rate of Na:Na exchange is stimulated by increased levels of ADP and exchange transport is not observed in cells totally depleted of intracellular ATP. These characteristics suggest that the biochemical mechanism underlying the Na exchange mode of the Na pump involves phosphorylation of the enzyme by ATP (which requires intracellular Na) followed by its dephosphorylation by ADP. Such a reaction has been observed in partially purified (Na+ + K+) ATPase from a variety of sources and its dependence on Na concentration has been described (although not previously for the red cell enzyme). In the present work, intracellular ATP:ADP exchange reaction was initiated by photoreleased ATP following brief irradiation at 350 nm of ghosts containing caged-ATP. The ouabain-sensitive component of the ensuing ATP:ADP exchange reaction shows a biphasic response to extracellular Na. External Na in the range 0--10 mM has an inhibitory effect whilst increasing concentrations beyond this range stimulate the rate of exchange in a roughly linear fashion up to 100 mM Na. These results represent the first direct demonstration of the sidedness of the effects of Na on this partial sequence in the overall enzyme cycle and bear a qualitative resemblance to the Na effects on the Na-ATPase which occur in the absence of intracellular ADP in human red blood cells.  相似文献   

3.
Calcium is transported across the surface membrane of both nerve and muscle by a Na+-dependent mechanism, usually termed the Na:Ca exchange. It is well established from experiments on rod outer segments that one net positive charge enters the cell for every Ca2+ ion extruded by the exchange, which is generally interpreted to imply an exchange stoichiometry of 3 Na+:1 Ca2+. We have measured the currents associated with the operation of the exchange in both forward and reversed modes in isolated rod outer segments and we find that the reversed mode, in which Ca2+ enters the cell in exchange for Na+, depends strongly on the presence of external K+. The ability of changes in external K+ concentration ([K+]o) to perturb the equilibrium level of [Ca2+]i indicates that K+ is co-transported with calcium. From an examination of the relative changes of [Ca2+]o, [Na+]o, [K+]o and membrane potential required to maintain the exchange at equilibrium, we conclude that the exchange stoichiometry is 4 Na+:1 Ca2+, 1 K+ and we propose that the exchange should be renamed the Na:Ca, K exchange. Harnessing the outward K+ gradient should allow the exchange to maintain a Ca2+ efflux down to levels of internal [Ca2+] that are considerably lower than would be possible with a 3 Na+:1 Ca2+ exchange.  相似文献   

4.
V L Lew  R Y Tsien  C Miner  R M Bookchin 《Nature》1982,298(5873):478-481
The physiological actions of Ca2+ as a trigger and second messenger depend on the maintenance of large inward resting Ca2+ gradients across the cell plasma membrane. An ATP-fuelled Ca-pump, originally discovered and still best characterized in human red cells, is now believed to mediate resting Ca2+ extrusion in most animal cells. However, even in red cells, the truly physiological pump-leak turnover rate and cytoplasmic free Ca2+ level are unknown. Previous estimates were only very imprecise upper limits because normal intact red cells have a minute total pool of exchangeable Ca of less than 1 mumol 1 cells; Ca fluxes could not be measured without artificially increasing that pool with ionophores or disrupting the membrane to incorporate Ca buffers. Both procedures leave the membrane considerably leakier than in intact cells. Here, we have increased the exchangeable Ca pool by non-disruptively loading a Ca-chelator into intact cells, using intracellular hydrolysis of a membrane-permeant ester. The trapped chelator made the free cytoplasmic calcium concentration, [Ca2+]i, an easily defined function of directly measurable total cell Ca. We were then able to establish the physiological steady-state [Ca2+]i and pump-leak turnover rate of fresh cells suspended in their own plasma. If [Ca2+]i was lowered below the normal resting level, the Ca pump rate decreased according to the square of [Ca2+]i, and the inward Ca leak increased. The increase in leak did not develop if the cells were depleted of ATP and ADP.  相似文献   

5.
K H Lee  R Blostein 《Nature》1980,285(5763):338-339
In the absence of extracellular Na+ or K+, the sodium pump catalyses an ouabain-sensitive "uncoupled" Na+ efflux1-4. With red cell ghosts Glynn and Karlish5 showed that this Na+ efflux is accompanied by ATP hydrolysis and that extracellular sodium ions, at low concentrations, inhibit this efflux as well as the associated ATP hydrolysis. At higher concentrations, extracellular sodium ions restore the hydrolysis of ATP3,6 but it is not known whether there is an associated increase in Na+ efflux and, perhaps, an influx. To answer this question we have used inside-out red cell membrane vesicles which are specially suitable for controlling the composition of the medium at the two membrane surfaces while measuring 22Na+ fluxes in both directions. We report here that the sodium pump can operate in a mode in which influx and efflux of sodium are associated with ATP hydrolysis. This mode is different from the Na-Na exchange described by Garrahan and Glynn7, and Glynn and Hoffman8, which requires ADP as well as ATP9 and is probably associated with ADP-ATP exchage rather than ATP hydrolysis10,11.  相似文献   

6.
E Mueller  C van Breemen 《Nature》1979,281(5733):682-683
Various mechanisms have been proposed for beta-adrenergically mediated relaxation of smooth muscle. All theories suggest the involvement of cyclic AMP as a second messenger: beta-agonists stimulate adenylate cyclase which converts ATP to cyclic AMP and protein kinase, activated by cyclic AMP, is then thought to catalyse a protein phosphorylation that leads to a reduction in free Ca2+, thus effecting relaxation. How this last step is accomplished is much debated, but the following possibilities are currently considered as the mechanisms responsible for cyclic AMP-induced reduction of cytoplasmic Ca2+: activation of a Ca2+-ATPase in the plasma and/or sarcoplasmic reticulum membranes which lowers cytoplasmic [Ca2+] in a direct manner or stimulation of (Na+-K+)ATPase in the cell membrane which may indirectly effect Ca2+ extrusion. Among the hypotheses suggested, those of Ca2+ sequestration by the sarcoplasmic reticulum and of Ca2+ extrusion across the cell membrane are consistent with each other if it is assumed that both processes are effected by a cyclic AMP-sensitive Ca2+-ATPase. However, quite a different mechanism is implied by involving the Na+-K+ pump and Na+-Ca2+ exchange carrier. In this report, we present evidence that suggests intracellular Ca2+ sequestration is the mechanism involved.  相似文献   

7.
Calcium is known to play an essential part in the regulation of insulin secretion in the pancreatic beta cell. Calcium influx/efflux studies indicate that glucose promotes an accumulation of calcium by the beta cell. However, interpretation of such data is particularly difficult due to the complex compartmentalization of calcium within the cell. Although indirect evidence using chlorotetracycline suggests that control of calcium homeostasis at the plasma membrane may be central to insulin secretion, the mechanism by which secretagogues influence the handling of calcium remains unknown. Despite its continuous diffusive entry, intracellular calcium is maintained in the submicromolar range by energy-dependent mechanisms. One such process which has been well characterized in erythrocytes is a plasma membrane calcium extrusion pump whose enzymatic basis is a high affinity (Ca+2 + Mg+2)ATPase. A similar mechanism regulated by insulin has recently been identified in adipocyte plasma membranes. We report here the presence of a high affinity (Ca+2 + Mg+2)ATPase and ATP-dependent calmodulin-stimulated calcium transport system in rat pancreatic islet cell plasma membranes.  相似文献   

8.
W F Boron  E Hogan  J M Russell 《Nature》1988,332(6161):262-265
The regulation of intracellular pH (pHi) is essential for normal cell function, and controlled changes in pHi may play a central role in cell activation. Sodium-dependent Cl-HCO3 exchange is the dominant mechanism of pHi regulation in the invertebrate cells examined, and also occurs in mammalian cells. The transporter extrudes acid from the cell by exchanging extracellular Na+ and HCO3- (ref. 9) (or a related species) for intracellular Cl- (refs 3, 4). It is blocked by the stilbene derivatives DIDS (4,4'-diisothiocyano-stilbene-2,2'-disulphonate, ref. 10) and SITS (4-acetamido-4'-isothiocyano-stilbene-2,2'-disulphonate, ref. 3), and has a stoichiometry of two intracellular H+ neutralized for each Na+ taken up and each Cl- extruded by the axon. Because the inwardly-directed Na+ concentration gradient is sufficiently large to energize both the HCO3- influx and Cl- efflux, this electroneutral exchanger could be a classic secondary active transporter, thermodynamically independent of ATP hydrolysis. However, at least in the squid axon, the exchanger has an absolute requirement for ATP (ref. 3). Thus, a major unresolved issue is whether this Na-dependent Cl-HCO3 exchanger stoichiometrically hydrolyses ATP (the pump hypothesis), or whether ATP activates the transporter by a mechanism such as phosphorylation or simple binding (the activation hypothesis). We have now explored the role of ATP in pHi regulation by dialysing axons with the ATP analogue ATP-gamma-S. In many systems, ATP-gamma-S is an acceptable substrate for protein kinases, whereas the resulting thiophosphorylated proteins are not as readily hydrolysed by phosphatases as are phosphorylated proteins. Our results rule out the pump hypothesis, and show that the basis of the axon's ATP requirement is the pH-dependent activation (by, for instance, phosphorylation or ATP binding) of the exchanger itself, or of an essential activator.  相似文献   

9.
L M Crespo  C J Grantham  M B Cannell 《Nature》1990,345(6276):618-621
Compelling evidence has existed for more than a decade for a sodium/calcium (Na-Ca) exchange mechanism in the surface membrane of mammalian heart muscle cells which exchanges about three sodium ions for each calcium ion. Although it is known that cardiac muscle contraction is regulated by a transient increase in intracellular calcium ([Ca2+]i) triggered by the action potential, the contribution of the Na-Ca exchanger to the [Ca2+]i transient and to calcium extrusion during rest is unclear. To clarify these questions, changes in [Ca2+]i were measured with indo-1 in single cardiac myocytes which were voltage clamped and dialysed with a physiological level of sodium. We find that Ca entry through the Na-Ca exchanger is too slow to affect markedly the rate of rise of the normal [Ca2+]i transient. On repolarization, Ca extrusion by the exchanger causes [Ca2+]i to decline with a time constant of 0.5 s at -80 mV. The rate of decline can be slowed e-fold with a 77-mV depolarization. Calcium extrusion by the exchanger can account for about 15% of the rate of decline of the [Ca2+]i transient (the remainder being calcium resequestration by the sarcoplasmic reticulum (SR]. The ability of the cell to extrude calcium was greatly reduced on inhibiting the exchanger by removing external sodium, which itself led to an increase in resting [Ca2+]i. This finding is in contrast to the suggestion that calcium extrusion at rest is mediated mainly by a sarcolemmal Ca-ATPase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
H A Pershadsingh  J M McDonald 《Nature》1979,281(5731):495-497
The mechanism by which insulin regulates cellular metabolism remains unknown although indirect evidence suggests that alterations in intracellular calcium are important. More specifically, it has been proposed that insulin triggers an increase in intracellular calcium which is responsible for the subsequent modification of metabolic activities. The cell maintains a large electrochemical gradient for ionised calcium between the cytoplasm (less than 10(-6) M, as determined for muscle and nerve) and the extracellular environment (less than 10(-3) M). The plasma membrane may, therefore, be important in the regulation of calcium homeostasis, as a slight alteration in the processes maintaining this gradient could result in marked changes in cytoplasmic calcium. One such process is the active extrusion of calcium from the cell by a high affinity calcium-stimulated ATPase (Ca2+-ATPase). Such a mechanism has been well established in red cells and is postulated in nerve, liver and muscle. We have identified a high affinity Ca2+-ATPase in a plasma membrane-enriched subcellular fraction isolated from rat adipocytes which may provide the enzymatic basis for a calcium extrusion pump. We demonstrate here that the Ca2+-ATPase is specifically inhibited by the direct addition of physiological concentrations of insulin to the direct addition of physiological concentrations of insulin to the isolated plasma membranes. This effect suggests that direct regulation of calcium homeostasis may represent an important event in the mechanism of action of insulin.  相似文献   

11.
In single rat pancreatic β cells,using fura-2 microfluorometry to measure [Ca2+]i response upon different stimuli,the ways of calcium regulation have been studied.When the extracellular calcium concentration was 2.5 mmol/L,either 60 mmol/L KCl,20 mmol/L D-glucose or 0.1 mmol/L tolbutamide induced increase in [Ca2+]i.Such increase in [Ca2+]i was absent when the same stimuli were applied under zero extracellular calcium.These results indicate that the increase of [Ca2+]i is induced by the activation of voltage-dependent calcium channels in β cells.The manifold forms of [Ca2+]i change induced by glucose imply that the effects of glucose are complex.5 mmol/L caffeine or 5 mmol/L MCh increase the [Ca2+]i ,which is independent of the external calcium,suggesting that [Ca2+]i can be regulated by Ca2+ release from not only the IP3-sensitive but also the ryanodine sensitive calcium stores in β cells.The latency of Ca responses for IP3 pathway (5 s) is faster than that for ryanodine pathway (30 s).It is concluded that there are multiple calcium stores in rat pancreatic β cells.  相似文献   

12.
Reyes N  Gadsby DC 《Nature》2006,443(7110):470-474
P-type ATPase pumps generate concentration gradients of cations across membranes in nearly all cells. They provide a polar transmembrane pathway, to which access is strictly controlled by coupled gates that are constrained to open alternately, thereby enabling thermodynamically uphill ion transport (for example, see ref. 1). Here we examine the ion pathway through the Na+,K+-ATPase, a representative P-type pump, after uncoupling its extra- and intracellular gates with the marine toxin palytoxin. We use small hydrophilic thiol-specific reagents as extracellular probes and we monitor their reactions, and the consequences, with cysteine residues introduced along the anticipated cation pathway through the pump. The distinct effects of differently charged reagents indicate that a wide outer vestibule penetrates deep into the Na+,K+-ATPase, where the pathway narrows and leads to a charge-selectivity filter. Acidic residues in this region, which are conserved to coordinate pumped ions, allow the approach of cations but exclude anions. Reversing the charge at just one of those positions converts the pathway from cation selective to anion selective. Close structural homology among the catalytic subunits of Ca2+-, Na+,K+- and H+,K+-ATPases argues that their extracytosolic cation exchange pathways all share these physical characteristics.  相似文献   

13.
W H Moolenaar  L G Tertoolen  S W de Laat 《Nature》1984,312(5992):371-374
There is now good evidence that cytoplasmic pH (pHi) may have an important role in the metabolic activation of quiescent cells. In particular, growth stimulation of mammalian fibroblasts leads to a rapid increase in pHi (refs 3-6), due to activation of a Na+/H+ exchanger in the plasma membrane, and this alkalinization is necessary for the initiation of DNA synthesis. However, the mechanism by which mitogens activate the Na+/H+ exchanger to raise pHi is not known, although an increase in cytoplasmic free Ca2+ ([Ca2+]i) has been postulated as the primary trigger. We now present data suggesting that the Na+/H+ exchanger is set in motion through protein kinase C, a phospholipid- and Ca2+-dependent enzyme normally activated by diacylglycerol produced from inositol phospholipids in response to external stimuli. Using newly developed pH microelectrodes and fluorimetric techniques, we show that a tumour promoting phorbol ester and synthetic diacylglycerol, both potent activators of kinase C (refs 12-15), mimic the action of mitogens in rapidly elevating pHi in different cell types. Furthermore, we demonstrate that, contrary to previous views, an early rise in [Ca2+]i is not essential for the activation of Na+/H+ exchange and the resultant increase in pHi. Finally, we suggest that an alkaline pHi shift, mediated by Na+/H+ exchange, may be a common signal in the action of those hormones which elicit the breakdown of inositol phospholipids.  相似文献   

14.
R Jacob  J E Merritt  T J Hallam  T J Rink 《Nature》1988,335(6185):40-45
Measurement of cytoplasmic free calcium, [Ca2+]i, in single human endothelial cells has shown that low doses of the inflammatory mediator histamine evoke asynchronous repetitive spikes in [Ca2+]i whereas high doses cause a maintained elevated [Ca2+]i. We discuss possible regulatory mechanisms, and the potential physiological and pathological implications of such a frequency-modulated [Ca2+]i signalling system.  相似文献   

15.
T J Allen  P F Baker 《Nature》1985,315(6022):755-756
Until recently, intracellular free calcium has been amenable to measurement and investigation only in cells large enough to permit either microinjection of a suitable Ca sensor such as a aequorin or arsenazo III or insertion of a Ca-sensitive microelectrode. This constraint on cell size was removed by the development of the fluorescent Ca2+ -sensitive dye Quin-2 and its acetoxymethyl ester, which can be introduced into a wide range of cell types. A major requirement of any intracellular Ca2+ indicator is that it should not disturb intracellular Ca2+ homeostasis and Quin-2 is generally considered to be satisfactory in this respect. We now report that injection of Quin-2 into squid (Loligo forbesi) axons can almost completely abolish one component of Ca2+ entry--intracellular Na+ (Nai)-dependent Ca2+ inflow, which occurs via Na/Ca exchange. Mixtures of Ca and Quin-2 that buffer an ionized Ca2+ at close to physiological concentrations also block Nai-dependent Ca2+ influx but these same mixtures fail to block the extracellular Na+ (Na0)-dependent extrusion of Ca2+, showing that Quin-2 acts specifically on Ca2+ inflow.  相似文献   

16.
Expression of receptors for sheep red blood cells and the ability to proliferate in response to phytohaemagglutinin (PHA) are the traditional properties of human T cells, but the function of the sheep red cell receptor (the T11 antigen) is controversial and the mechanism of PHA-induced mitogenesis unclear. Mitogenesis involves a complex series of cell-mediated and factor-dependent interactions, but a rise in intracellular free calcium concentration, [Ca2+]i, seems to be an important primary event in T-cell activation. We have now investigated the effects of three monoclonal antibodies, previously shown to inhibit mitogen-induced proliferation, on T-cell [Ca2+]i. We find that anti-LFA-2 and OKT11, which react with the sheep red cell receptor, have no effect on [Ca2+]i, nor do they inhibit the rise in [Ca2+]i induced by concanavalin A (Con A) or the mitogenic anti-T3 monoclonal antibody UCHT1 (ref. 11). They do, however, block PHA-induced Ca2+ mobilization. Anti-LFA-1, which reacts with the lymphocyte function-associated antigen, has no effect on intracellular Ca2+. These studies suggest that the sheep red blood cell receptor is an activation pathway for T cells and that the effects of PHA are mediated through this pathway.  相似文献   

17.
R Serrano  M C Kielland-Brandt  G R Fink 《Nature》1986,319(6055):689-693
The plasma membrane ATPase of plants and fungi is a hydrogen ion pump. The proton gradient generated by the enzyme drives the active transport of nutrients by H+-symport. In addition, the external acidification in plants and the internal alkalinization in fungi, both resulting from activation of the H+ pump, have been proposed to mediate growth responses. This ATPase has a relative molecular mass (Mr) similar to those of the Na+-, K+- and Ca2+-ATPases of animal cells and, like these proteins, forms an aspartylphosphate intermediate. We have cloned, mapped and sequenced the gene encoding the yeast plasma membrane ATPase (PMA1) and report here that it maps to chromosome VII adjacent to LEU1. The strong homology between the amino-acid sequence encoded by PMA1 and those of (Na+ + K+), Na+-, K+- and Ca2+- ATPases is consistent with the notion that the family of cation pumps which form a phosphorylated intermediate evolved from a common ancestral ATPase. The function of the PMA1 gene is essential because a null mutation is lethal in haploid cells.  相似文献   

18.
Y Osipchuk  M Cahalan 《Nature》1992,359(6392):241-244
Rat basophilic leukaemia cells, like mast cells from which they are derived, have surface Fc epsilon receptors that trigger secretion of inflammatory mediators when crosslinked. Both GTP-binding proteins and a rise in cytosolic calcium concentration ([Ca2+]i) are implicated in the secretory mechanism. Here we use a video-imaging technique to report that transient rises in [Ca2+]i initiated in an individual cell can spread from cell to cell in a wave-like pattern by means of a secreted intermediate, in the absence of gap-junctional communication. We find that the leukaemia cells, peritoneal mast cells and mucosal mast cells have cell-surface P2-type purinergic receptors that can trigger similar [Ca2+]i transients. We provide evidence that ATP is rapidly released, and that it can amplify [Ca2+]i signals and initial secretory responses during antigen-stimulation of rat basophilic leukaemia cells.  相似文献   

19.
E Nisbet-Brown  R K Cheung  J W Lee  E W Gelfand 《Nature》1985,316(6028):545-547
Calcium has been implicated as an intracellular messenger in the cellular response to various external stimuli. Exposure of lymphocytes to various mitogens and lectins results in rapid transmembrane calcium fluxes and increased cytoplasmic calcium concentrations ([Ca2+]i). It is not clear, however, whether the mechanisms by which these non-physiological stimuli activate cells are related to those involved in antigen-specific activation. We have now used antigen-specific T-cell clones to study changes in [Ca2+]i associated with specific activation and show here that these cells respond specifically in the presence of antigen and antigen-presenting cells (APC) with increased [Ca2+]i and that this increased [Ca2+]i shows the same genetic restrictions as are seen in the proliferation assay. The kinetics of the [Ca2+]i response to antigen indicate that antigen undergoes a time-dependent processing step as a prerequisite for recognition by T cells, as has been shown for T-cell proliferative responses, but that the [Ca2+]i response to processed antigen is extremely rapid. The close correlation between changes in [Ca2+]i and cell activation resulting in proliferation suggests that Ca2+ may act as an intracellular messenger in antigen-specific responses.  相似文献   

20.
Role for microsomal Ca storage in mammalian neurones?   总被引:4,自引:0,他引:4  
I R Neering  R N McBurney 《Nature》1984,309(5964):158-160
Alterations in the intracellular concentration of calcium ions [( Ca2+]i) are increasingly being found to be associated with regulatory functions in cells of all kinds. In muscle, an elevation of [Ca2+]i is the final link in excitation-contraction coupling while at nerve endings and in secretory cells, similar rises in [Ca2+]i are thought to mediate exocytosis. The discovery of calcium-activated ion channels indicated a role for intracellular calcium in the regulation of membrane excitability. Calcium transients associated with either intracellular release or the inward movement of Ca2+ across the membrane have been recorded in molluscan neurons and more recently in neurones of bullfrog sympathetic ganglia. Here, we report the first recordings of calcium transients in single mammalian neurones. In these experiments we have found that the methylxanthine, caffeine, causes the release of calcium from a labile intracellular store which can be refilled by Ca2+ entering the cell during action potentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号