首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers for responses to targeted agents. Here, to uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we screened a panel of several hundred cancer cell lines--which represent much of the tissue-type and genetic diversity of human cancers--with 130 drugs under clinical and preclinical investigation. In aggregate, we found that mutated cancer genes were associated with cellular response to most currently available cancer drugs. Classic oncogene addiction paradigms were modified by additional tissue-specific or expression biomarkers, and some frequently mutated genes were associated with sensitivity to a broad range of therapeutic agents. Unexpected relationships were revealed, including the marked sensitivity of Ewing's sarcoma cells harbouring the EWS (also known as EWSR1)-FLI1 gene translocation to poly(ADP-ribose) polymerase (PARP) inhibitors. By linking drug activity to the functional complexity of cancer genomes, systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies.  相似文献   

2.
3.
Wang Z  Smith KS  Murphy M  Piloto O  Somervaille TC  Cleary ML 《Nature》2008,455(7217):1205-1209
Glycogen synthase kinase 3 (GSK3) is a multifunctional serine/threonine kinase that participates in numerous signalling pathways involved in diverse physiological processes. Several of these pathways are implicated in disease pathogenesis, which has prompted efforts to develop GSK3-specific inhibitors for therapeutic applications. However, before now, there has been no strong rationale for targeting GSK3 in malignancies. Here we report pharmacological, physiological and genetic studies that demonstrate an oncogenic requirement for GSK3 in the maintenance of a specific subtype of poor prognosis human leukaemia, genetically defined by mutations of the MLL proto-oncogene. In contrast to its previously characterized roles in suppression of neoplasia-associated signalling pathways, GSK3 paradoxically supports MLL leukaemia cell proliferation and transformation by a mechanism that ultimately involves destabilization of the cyclin-dependent kinase inhibitor p27(Kip1). Inhibition of GSK3 in a preclinical murine model of MLL leukaemia provides promising evidence of efficacy and earmarks GSK3 as a candidate cancer drug target.  相似文献   

4.
Drug resistance presents a challenge to the treatment of cancer patients. Many studies have focused on cell-autonomous mechanisms of drug resistance. By contrast, we proposed that the tumour micro-environment confers innate resistance to therapy. Here we developed a co-culture system to systematically assay the ability of 23 stromal cell types to influence the innate resistance of 45 cancer cell lines to 35 anticancer drugs. We found that stroma-mediated resistance is common, particularly to targeted agents. We characterized further the stroma-mediated resistance of BRAF-mutant melanoma to RAF inhibitors because most patients with this type of cancer show some degree of innate resistance. Proteomic analysis showed that stromal cell secretion of hepatocyte growth factor (HGF) resulted in activation of the HGF receptor MET, reactivation of the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-OH kinase (PI(3)K)-AKT signalling pathways, and immediate resistance to RAF inhibition. Immunohistochemistry experiments confirmed stromal cell expression of HGF in patients with BRAF-mutant melanoma and showed a significant correlation between HGF expression by stromal cells and innate resistance to RAF inhibitor treatment. Dual inhibition of RAF and either HGF or MET resulted in reversal of drug resistance, suggesting RAF plus HGF or MET inhibitory combination therapy as a potential therapeutic strategy for BRAF-mutant melanoma. A similar resistance mechanism was uncovered in a subset of BRAF-mutant colorectal and glioblastoma cell lines. More generally, this study indicates that the systematic dissection of interactions between tumours and their micro-environment can uncover important mechanisms underlying drug resistance.  相似文献   

5.
Glioblastoma stem-like cells give rise to tumour endothelium   总被引:2,自引:0,他引:2  
Glioblastoma (GBM) is among the most aggressive of human cancers. A key feature of GBMs is the extensive network of abnormal vasculature characterized by glomeruloid structures and endothelial hyperplasia. Yet the mechanisms of angiogenesis and the origin of tumour endothelial cells remain poorly defined. Here we demonstrate that a subpopulation of endothelial cells within glioblastomas harbour the same somatic mutations identified within tumour cells, such as amplification of EGFR and chromosome 7. We additionally demonstrate that the stem-cell-like CD133(+) fraction includes a subset of vascular endothelial-cadherin (CD144)-expressing cells that show characteristics of endothelial progenitors capable of maturation into endothelial cells. Extensive in vitro and in vivo lineage analyses, including single cell clonal studies, further show that a subpopulation of the CD133(+) stem-like cell fraction is multipotent and capable of differentiation along tumour and endothelial lineages, possibly via an intermediate CD133(+)/CD144(+) progenitor cell. The findings are supported by genetic studies of specific exons selected from The Cancer Genome Atlas, quantitative FISH and comparative genomic hybridization data that demonstrate identical genomic profiles in the CD133(+) tumour cells, their endothelial progenitor derivatives and mature endothelium. Exposure to the clinical anti-angiogenesis agent bevacizumab or to a γ-secretase inhibitor as well as knockdown shRNA studies demonstrate that blocking VEGF or silencing VEGFR2 inhibits the maturation of tumour endothelial progenitors into endothelium but not the differentiation of CD133(+) cells into endothelial progenitors, whereas γ-secretase inhibition or NOTCH1 silencing blocks the transition into endothelial progenitors. These data may provide new perspectives on the mechanisms of failure of anti-angiogenesis inhibitors currently in use. The lineage plasticity and capacity to generate tumour vasculature of the putative cancer stem cells within glioblastoma are novel findings that provide new insight into the biology of gliomas and the definition of cancer stemness, as well as the mechanisms of tumour neo-angiogenesis.  相似文献   

6.
 随着新一代基因测序技术以及癌生物学的迅猛发展,基于基因组生物标志物的抗肿瘤精准药物开发成为药物研发的重要方向。介绍了抗肿瘤精准药物在非小细胞肺癌、乳腺癌、黑色素瘤以及白血病等肿瘤领域表现出的优异治疗效果,剖析了目前已上市以及处于研发阶段的“泛癌种”药物,表明基于生物标志物而非肿瘤组织的治疗药物将成为抗肿瘤药物研发的方向之一。介绍了以“篮子试验”和“雨伞试验”为代表的抗肿瘤药物新型临床试验设计以及PROTACs药物开发新技术,指出新理念新技术的出现将进一步推动抗肿瘤精准药物发展,促进针对耐药或“不可成药靶点”的靶向药物的开发。  相似文献   

7.
When microarray gene expression data are used to predict multiple drug resistance (MDR) phenotypes for anticancer drugs, the normalization strategy and the quality of the selected signature genes are usually the main causes of inconsistency among different experiments. A stable statistical drug response prediction model is urgently required in oncology. In this study, the microarray gene expression data of multiple cancer cell lines with MDR was analyzed. For each probe-set, the expression value was defined as present/absent (1/0) and was classified into a gene set defined with protein domain organization (PDO). After employing the gene content method of phylogenetic analysis, a phylogenetic model (cell tree) for MDR phenotype prediction was built at the PDO gene set level. The results indicate that classification of cancer cell lines is predominantly affected by both the histopathological features and the MDR phenotype (paclitaxel and vinblastine). When applying this model to predict the MDR phenotype of independent samples, the phylogenetic model performs better than signature gene models. Although the utility of our procedure is limited due to sample heterogeneity, it still has potential application in MDR research, especially for hematological tumors or established cell lines.  相似文献   

8.
The kinase pathway comprising RAS, RAF, mitogen-activated protein kinase kinase (MEK) and extracellular signal regulated kinase (ERK) is activated in most human tumours, often through gain-of-function mutations of RAS and RAF family members. Using small-molecule inhibitors of MEK and an integrated genetic and pharmacologic analysis, we find that mutation of BRAF is associated with enhanced and selective sensitivity to MEK inhibition when compared to either 'wild-type' cells or cells harbouring a RAS mutation. This MEK dependency was observed in BRAF mutant cells regardless of tissue lineage, and correlated with both downregulation of cyclin D1 protein expression and the induction of G1 arrest. Pharmacological MEK inhibition completely abrogated tumour growth in BRAF mutant xenografts, whereas RAS mutant tumours were only partially inhibited. These data suggest an exquisite dependency on MEK activity in BRAF mutant tumours, and offer a rational therapeutic strategy for this genetically defined tumour subtype.  相似文献   

9.
Cells with loss of BRCA2 function are defective in homologous recombination (HR) and are highly sensitive to inhibitors of poly(ADP-ribose) polymerase (PARP), which provides the basis for a new therapeutic approach. Here we show that resistance to PARP inhibition can be acquired by deletion of a mutation in BRCA2. We derived PARP-inhibitor-resistant (PIR) clones from the human CAPAN1 pancreatic cancer cell line, which carries the protein-truncating c.6174delT frameshift mutation. PIR clones could form DNA-damage-induced RAD51 nuclear foci and were able to limit genotoxin-induced genomic instability, both hallmarks of a competent HR pathway. New BRCA2 isoforms were expressed in the resistant lines as a result of intragenic deletion of the c.6174delT mutation and restoration of the open reading frame (ORF). Reconstitution of BRCA2-deficient cells with these revertant BRCA2 alleles rescued PARP inhibitor sensitivity and HR deficiency. Most of the deletions in BRCA2 were associated with small tracts of homology, and possibly arose from error-prone repair caused by BRCA2 deficiency. Similar ORF-restoring mutations were present in carboplatin-resistant ovarian tumours from c.6174delT mutation carriers. These observations have implications for understanding drug resistance in BRCA mutation carriers as well as in defining functionally important domains within BRCA2.  相似文献   

10.
Cancer cells adapt their metabolic processes to drive macromolecular biosynthesis for rapid cell growth and proliferation. RNA interference (RNAi)-based loss-of-function screening has proven powerful for the identification of new and interesting cancer targets, and recent studies have used this technology in vivo to identify novel tumour suppressor genes. Here we developed a method for identifying novel cancer targets via negative-selection RNAi screening using a human breast cancer xenograft model at an orthotopic site in the mouse. Using this method, we screened a set of metabolic genes associated with aggressive breast cancer and stemness to identify those required for in vivo tumorigenesis. Among the genes identified, phosphoglycerate dehydrogenase (PHGDH) is in a genomic region of recurrent copy number gain in breast cancer and PHGDH protein levels are elevated in 70% of oestrogen receptor (ER)-negative breast cancers. PHGDH catalyses the first step in the serine biosynthesis pathway, and breast cancer cells with high PHGDH expression have increased serine synthesis flux. Suppression of PHGDH in cell lines with elevated PHGDH expression, but not in those without, causes a strong decrease in cell proliferation and a reduction in serine synthesis. We find that PHGDH suppression does not affect intracellular serine levels, but causes a drop in the levels of α-ketoglutarate, another output of the pathway and a tricarboxylic acid (TCA) cycle intermediate. In cells with high PHGDH expression, the serine synthesis pathway contributes approximately 50% of the total anaplerotic flux of glutamine into the TCA cycle. These results reveal that certain breast cancers are dependent upon increased serine pathway flux caused by PHGDH overexpression and demonstrate the utility of in vivo negative-selection RNAi screens for finding potential anticancer targets.  相似文献   

11.
Chfr defines a mitotic stress checkpoint that delays entry into metaphase   总被引:23,自引:0,他引:23  
Scolnick DM  Halazonetis TD 《Nature》2000,406(6794):430-435
Chemicals that target microtubules induce mitotic stress by affecting several processes that occur during mitosis. These processes include separation of the centrosomes in prophase, alignment of the chromosomes on the spindle in metaphase and sister-chromatid separation in anaphase. Many human cancers are sensitive to mitotic stress. This sensitivity is being exploited for therapy and implies checkpoint defects. The known mitotic checkpoint genes, which prevent entry into anaphase when the chromosomes are not properly aligned on the mitotic spindle, are, however, rarely inactivated in human cancer. Here we describe the chfr gene, which is inactivated owing to lack of expression or by mutation in four out of eight human cancer cell lines examined. Normal primary cells and tumour cell lines that express wild-type chfr exhibited delayed entry into metaphase when centrosome separation was inhibited by mitotic stress. In contrast, the tumour cell lines that had lost chfr function entered metaphase without delay. Ectopic expression of wild-type chfr restored the cell cycle delay and increased the ability of the cells to survive mitotic stress. Thus, chfr defines a checkpoint that delays entry into metaphase in response to mitotic stress.  相似文献   

12.
The effective use of targeted therapy is highly dependent on the identification of responder patient populations. Loss of FBW7, which encodes a tumour-suppressor protein, is frequently found in various types of human cancer, including breast cancer, colon cancer and T-cell acute lymphoblastic leukaemia (T-ALL). In line with these genomic data, engineered deletion of Fbw7 in mouse T cells results in T-ALL, validating FBW7 as a T-ALL tumour suppressor. Determining the precise molecular mechanisms by which FBW7 exerts antitumour activity is an area of intensive investigation. These mechanisms are thought to relate in part to FBW7-mediated destruction of key proteins relevant to cancer, including Jun, Myc, cyclin E and notch 1 (ref. 9), all of which have oncoprotein activity and are overexpressed in various human cancers, including leukaemia. In addition to accelerating cell growth, overexpression of Jun, Myc or notch 1 can also induce programmed cell death. Thus, considerable uncertainty surrounds how FBW7-deficient cells evade cell death in the setting of upregulated Jun, Myc and/or notch 1. Here we show that the E3 ubiquitin ligase SCF(FBW7) (a SKP1-cullin-1-F-box complex that contains FBW7 as the F-box protein) governs cellular apoptosis by targeting MCL1, a pro-survival BCL2 family member, for ubiquitylation and destruction in a manner that depends on phosphorylation by glycogen synthase kinase 3. Human T-ALL cell lines showed a close relationship between FBW7 loss and MCL1 overexpression. Correspondingly, T-ALL cell lines with defective FBW7 are particularly sensitive to the multi-kinase inhibitor sorafenib but resistant to the BCL2 antagonist ABT-737. On the genetic level, FBW7 reconstitution or MCL1 depletion restores sensitivity to ABT-737, establishing MCL1 as a therapeutically relevant bypass survival mechanism that enables FBW7-deficient cells to evade apoptosis. Therefore, our work provides insight into the molecular mechanism of direct tumour suppression by FBW7 and has implications for the targeted treatment of patients with FBW7-deficient T-ALL.  相似文献   

13.
Mutationally activated kinases define a clinically validated class of targets for cancer drug therapy. However, the efficacy of kinase inhibitors in patients whose tumours harbour such alleles is invariably limited by innate or acquired drug resistance. The identification of resistance mechanisms has revealed a recurrent theme—the engagement of survival signals redundant to those transduced by the targeted kinase. Cancer cells typically express multiple receptor tyrosine kinases (RTKs) that mediate signals that converge on common critical downstream cell-survival effectors—most notably, phosphatidylinositol-3-OH kinase (PI(3)K) and mitogen-activated protein kinase (MAPK). Consequently, an increase in RTK-ligand levels, through autocrine tumour-cell production, paracrine contribution from tumour stroma or systemic production, could confer resistance to inhibitors of an oncogenic kinase with a similar signalling output. Here, using a panel of kinase-'addicted' human cancer cell lines, we found that most cells can be rescued from drug sensitivity by simply exposing them to one or more RTK ligands. Among the findings with clinical implications was the observation that hepatocyte growth factor (HGF) confers resistance to the BRAF inhibitor PLX4032 (vemurafenib) in BRAF-mutant melanoma cells. These observations highlight the extensive redundancy of RTK-transduced signalling in cancer cells and the potentially broad role of widely expressed RTK ligands in innate and acquired resistance to drugs targeting oncogenic kinases.  相似文献   

14.
Potent inhibitors of human peptide deformylase (HsPDF) were screened using known PMT analog inhibi- tors of bacterial peptide deformylase. Forty-three species of PMT analogs that are non-peptidyl bacterial PDF inhibitors like actinonin were selected using virtual screening GOLD. Ten species out of 43 that could bind to HsPDF were selected and their antitumor activities were tested. Among them, four species (PMT-172, PMT-173, PMT-199, and PMT-201) showed excellent growth inhibition of cancer cell in the MTT assay. HsPDF-PMT binding was confirmed through a 1H-CPMG-T2 filter NMR experiment leading to a significant change in peak intensity for PMT-172 and PMT-199. These results suggest that PMT analogs could possibly interact with HsPDF and be a novel anticancer drug candidate.  相似文献   

15.
16.
Gasser S  Orsulic S  Brown EJ  Raulet DH 《Nature》2005,436(7054):1186-1190
Some stimulatory receptors of the innate immune system, such as the NKG2D receptor (also called KLRK1) expressed by natural killer cells and activated CD8(+)T cells, recognize self-molecules that are upregulated in diseased cells by poorly understood mechanisms. Here we show that mouse and human NKG2D ligands are upregulated in non-tumour cell lines by genotoxic stress and stalled DNA replication, conditions known to activate a major DNA damage checkpoint pathway initiated by ATM (ataxia telangiectasia, mutated) or ATR (ATM- and Rad3-related) protein kinases. Ligand upregulation was prevented by pharmacological or genetic inhibition of ATR, ATM or Chk1 (a downstream transducer kinase in the pathway). Furthermore, constitutive ligand expression by a tumour cell line was inhibited by targeting short interfering RNA to ATM, suggesting that ligand expression in established tumour cells, which often harbour genomic irregularities, may be due to chronic activation of the DNA damage response pathway. Thus, the DNA damage response, previously shown to arrest the cell cycle and enhance DNA repair functions, or to trigger apoptosis, may also participate in alerting the immune system to the presence of potentially dangerous cells.  相似文献   

17.
Copy number variation and selection during reprogramming to pluripotency   总被引:2,自引:0,他引:2  
The mechanisms underlying the low efficiency of reprogramming somatic cells into induced pluripotent stem (iPS) cells are poorly understood. There is a clear need to study whether the reprogramming process itself compromises genomic integrity and, through this, the efficiency of iPS cell establishment. Using a high-resolution single nucleotide polymorphism array, we compared copy number variations (CNVs) of different passages of human iPS cells with their fibroblast cell origins and with human embryonic stem (ES) cells. Here we show that significantly more CNVs are present in early-passage human iPS cells than intermediate passage human iPS cells, fibroblasts or human ES cells. Most CNVs are formed de novo and generate genetic mosaicism in early-passage human iPS cells. Most of these novel CNVs rendered the affected cells at a selective disadvantage. Remarkably, expansion of human iPS cells in culture selects rapidly against mutated cells, driving the lines towards a genetic state resembling human ES cells.  相似文献   

18.
Oncogenic mutations in the serine/threonine kinase B-RAF (also known as BRAF) are found in 50-70% of malignant melanomas. Pre-clinical studies have demonstrated that the B-RAF(V600E) mutation predicts a dependency on the mitogen-activated protein kinase (MAPK) signalling cascade in melanoma-an observation that has been validated by the success of RAF and MEK inhibitors in clinical trials. However, clinical responses to targeted anticancer therapeutics are frequently confounded by de novo or acquired resistance. Identification of resistance mechanisms in a manner that elucidates alternative 'druggable' targets may inform effective long-term treatment strategies. Here we expressed ~600 kinase and kinase-related open reading frames (ORFs) in parallel to interrogate resistance to a selective RAF kinase inhibitor. We identified MAP3K8 (the gene encoding COT/Tpl2) as a MAPK pathway agonist that drives resistance to RAF inhibition in B-RAF(V600E) cell lines. COT activates ERK primarily through MEK-dependent mechanisms that do not require RAF signalling. Moreover, COT expression is associated with de novo resistance in B-RAF(V600E) cultured cell lines and acquired resistance in melanoma cells and tissue obtained from relapsing patients following treatment with MEK or RAF inhibitors. We further identify combinatorial MAPK pathway inhibition or targeting of COT kinase activity as possible therapeutic strategies for reducing MAPK pathway activation in this setting. Together, these results provide new insights into resistance mechanisms involving the MAPK pathway and articulate an integrative approach through which high-throughput functional screens may inform the development of novel therapeutic strategies.  相似文献   

19.
癌症是严重危害人类健康的一大顽症,近年来抗癌药物的研究取得了较大的进展,本文就目前抗癌药物研究领域较活跃的几个方面的研究进展进行了综述,内容包括金属抗癌药物,以天然产物为原料的抗癌药物,抗癌药物靶向制剂,基因工程药物,纳米材料抗癌药物与癌症的关系.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号