共查询到20条相似文献,搜索用时 54 毫秒
1.
提出了一种改进的混沌粒子群优化混合算法.该算法利用信息交换机制将两组种群分别用差分进化算法和粒子群算法进行协同进化,并且将混沌变异操作引入其中,加强算法的局部搜索能力.通过对3个标准函数进行测试,仿真结果表明该算法与差分进化粒子群优化(DEPSO)算法相比,全局搜索能力和抗早熟收敛性能大大提高. 相似文献
2.
三群协同粒子群优化算法 总被引:6,自引:0,他引:6
针对基本粒子群优化算法易陷入局部极值点、搜索精度低等缺点,提出了一种三群协同粒子群优化算法(TSC-PSO)。搜索时,如果全局极值连续若干代没有改善,粒子未找到全局最优点,就任选某个优群,将其群内粒子和差群粒子交换。仿真结果显示,对一些经典多峰值函数、非凸病态函数,TSC-PSO增强了全局搜索能力,具有比基本PSO更好的优化性能。 相似文献
3.
基于变异策略的粒子群算法 总被引:1,自引:0,他引:1
在研究粒子群算法的特点之后,将变异因子融入到粒子群算法之中,提出了一种带有变异策略的粒子群算法(MPSO).该变异因子可以提高算法对解空间的开发能力,从而降低了粒子群算法陷入局部最优的可能性.实验结果表明,经过对4个无约束问题、1个高维线性约束问题以及1个实际应用问题的测试,带有变异策略的粒子群算法可以成功地解决高维无约束问题和带有线性约束的高维问题.实验结果也表明,MPSO算法具有很强的收敛性和稳定性,是一种很有前途的优化算法. 相似文献
4.
5.
一种改进的粒子群优化算法 总被引:2,自引:0,他引:2
针对粒子群优化算法早熟收敛现象,提出了一种改进的粒子群优化算法.该算法将模拟退火算法的"上山性"引入粒子群算法中,同时为了增加种群的多样性,将交叉和变异算子也结合进去,形成了一种新的改进粒子群算法.比较了高斯变异和柯西变异这两种变异算子对改进算法的影响.改进算法对典型函数的优化计算结果表明,与基本粒子群算法相比,改进算法能够更加快速有效的收敛到全局最优解,而且采用柯西变异算子的改进算法的效果比采用高斯变异算子的效果要好. 相似文献
6.
针对标准粒子群算法(PSO)早熟收敛、进化后期收敛慢和精度较差等缺点,提出一种改进的自适应粒子群优化算法。该算法根据粒子的适应度值一致等价于粒子位置的特点,通过比较粒子适应度值与当前全局最优适应度值的差来自适应调整惯性权值,并按当前种群平均粒距对种群中部分粒子进行变异操作,增加种群多样性,使粒子跳出局部极值。通过几种典型函数的仿真实验表明,该算法在收敛速度和收敛精度上都比标准粒子群优化算法有明显的提高。 相似文献
7.
改进混合离散粒子群的多种优化策略算法 总被引:4,自引:0,他引:4
针对离散粒子群算法求解旅行商问题,根据组合优化问题和离散量的特点,改进离散粒子群算法更新的运动方程.对离散粒子群算法分别加入逆转变异优化策略、受蚁群启示的变异优化策略和近邻搜索变异优化策略3种优化变异优化策略,使其成为新的混合离散粒子群算法,最后对3种混合离散粒子群算法进行比较,并剖析仿真结果的本质.结果表明:3种优化策略在不同程度上都提高了离散粒子群算法的总体效果和收敛性能,其中,加入逆转变异优化策略的混合粒子群算法实现简单,时间代价较小;加入近邻搜索变异优化策略的混合粒子群算法不论是在最优值或稳定性方面表现最突出. 相似文献
8.
简化的自适应粒子群优化算法 总被引:2,自引:0,他引:2
对基本粒子群优化算法作了一些改进:通过去掉速度因子简化算法结构,引入指数下降形式的惯性权重,对全局极值进行自适应的变异操作,进而提出一种简化的带变异算子的自适应粒子群优化算法。通过与其他改进的粒子群算法的数值实验对比分析,表明提出的新算法能够有效地避免早熟收敛问题,并能较大幅度地提高收敛速度和收敛精度。 相似文献
9.
刘华 《湖南工程学院学报(自然科学版)》2022,(3):56-60+68
为了减缓我国经济社会快速发展给环境造成的负面影响,采用“双碳”战略方式和多能协同优化方法可减少碳排放对环境的污染.本文基于用户测试数据驱动,采用自适应改进粒子群优化算法,尽可能提高可再生能源利用率,实现多能管理系统与楼宇用电用户的相互协同,实现能源供给与消耗的协同优化,以促进清洁能源的开发与利用.最终通过仿真验证该方法的可行性,实验结果达到了预期目标. 相似文献
10.
一种自适应调节粒子群优化算法的研究 总被引:2,自引:0,他引:2
杨永生 《西安科技大学学报》2011,31(3)
针对粒子群优化算法容易出现早熟收敛和稳定性低的现象,提出一种自适应调节的粒子群算法.算法中通过自适应调节适应度值的均匀分布保持种群的多样性,该策略能够提高算法的全局搜索能力,同时可避免阈值对算法稳定性的影响.另外采用自适应周期性变异的惯性权重对粒子的速度进行更新,可改善算法的局部搜索能力和稳定性.使用多维标准函数对改进的算法进行仿真试验,结果表明,算法具有较好的全局搜索精度和稳定性,避免了早熟收敛. 相似文献
11.
粒子群优化算法研究进展 总被引:1,自引:0,他引:1
粒子群优化(PSO)算法是一种源于人工生命和演化计算理论的新兴优化技术.其基本思想为:每个粒子被随机的初始化以表示一个可能的解,并在解空间通过更新迭代搜索最优解.PSO的优势在于算法简单,对目标函数要求少,易于实现而又功能强大.目前,已受到演化计算领域的学者们的广泛关注,并提出了许多改进的算法.本文阐述基本粒子群的原理,给出了各种改进的算法,并展望了PSO的发展方向. 相似文献
12.
粒子群算法惯性权重的研究 总被引:1,自引:0,他引:1
唐忠 《广西大学学报(自然科学版)》2009,34(5)
粒子群算法惯性权重ω的设置其极重要,直接影响算法性能.本文利用云发生器对惯性权重进行调整,对其取值范嗣做了进一步的研究,并应用于粒子群算法的改进.以高维函数优化为实例,实验仿真结果表明,新算法的全局搜索能力、收敛速度,精度和稳定性均有了显著提高. 相似文献
13.
14.
15.
16.
微粒群优化算法的研究现状与发展 总被引:2,自引:0,他引:2
针对群体智能算法(SIA)中引起广泛兴趣的微粒群优化算法(PSO)的基本原理、框架,介绍了PSO的一些研究现状及其进展,最后提出了PSO有待进一步研究的若干方向和工作. 相似文献
17.
简约粒子群优化算法 总被引:6,自引:0,他引:6
针对全局版粒子群的早熟和局部版粒子群的最优位置信息利用率低的问题,提出简约粒子群算法.该算法使用速度松弛迭代策略,使粒子不必频繁更新速度,当粒子速度有利于适应度进一步提高时,就在下一个迭代周期内维持该速度,这有利于提高良好速度信息的利用率,减小算法的计算量,加快运算的收敛速度.同时,利用精英集团策略,使多个最优位置信息在种群内充分共享,有效地控制了种群多样性,避免了早熟现象.在典型标准测试函数上进行了全局、局部版惯性因子粒子群和全局、局部版约束因子粒子群测试比较,结果表明简约粒子群算法具有更强的寻优能力和更高的稳定性,且计算量也比较小. 相似文献
18.
在研究微粒群算法生物特征的基础上,提出了一种异步随机微粒群算法——ASPSO.该方法是在微粒的进化过程中,采用异步模式使全局最好位置信息以异步方式在种群中传播。从理论上证明了ASPSO与同步模式微粒群算法SPSO相比较具有更快的局部收敛速度,并对四个经典测试函数进行了仿真测试,测试结果表明:与SPSO相比,ASPSO算法具有更快的收敛速度。 相似文献
19.
《萍乡高等专科学校学报》2015,(3):91-95
基于传统的微粒群算法引进协同算子产生的一种新优化算法,将整个算法的粒子分为精英粒子和普通粒子,根据精英粒子的历史最优解来带动普通群体,使普通粒子能更快速度接近最优解,从而推动整个种群不断快速更新。文本中选取4个优化测试函数作为算法优化性能的测试,并选取正弦函数验证算法对控制器的优化效果,实验结果表明精英协同算法的精度更高,优化性能更佳。 相似文献
20.
分段式微粒群优化算法 总被引:3,自引:0,他引:3
提出一种分段式微粒群优化算法。该算法将所要搜索的区域分成若干段,首先在每一区段内搜索出区段的最优位置,然后将各区段的最优位置组成一微粒群,继续搜索全局最优位置。通过对5个常用标准测试函数进行优化计算,仿真结果表明:分段式微粒群优化算法能有效地搜索到全局最优解,具有比基本微粒群优化算法更快的搜索速度和更好的优化性能。 相似文献