首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
介绍了一种将石墨烯(Graphite)引入锂离子电池正极材料磷酸铁锂(LiFePO_4)中获得LiFePO_4/graphite复合材料的制备方法。首先以碳酸锂、草酸亚铁、磷酸氢二铵和葡萄糖为原材料,采用高温固相法合成了碳包覆的LiFePO_4前躯体,再通过固相粉体混合的工艺加入不同百分比的石墨烯,制备出磷酸铁/石墨烯锂离子电池正极复合材料;对所制备的复合材料组装成纽扣电池进行性能测试;结果表明:复合材料的电化学性能显著提高,在0.1C放电倍率条件下,LiFePO_4+1wt%graphite复合材料的首次放电容量从LiFePO_4基体材料的131.75mAh/g提高到146.51mAh/g,LiFePO_4+1wt%graphite复合材料的充电性能和放电性能分别提高了5.8%和4.8%。  相似文献   

2.
以衰老树叶为碳源,采用先预碳化后活化的方法合成生物质多孔碳,采用XRD、SEM、TEM、N2吸附-脱附,FT-IR等测试手段对其结构表征.结果显示,当碳碱比为3,400℃预碳化3h,600℃高温活化1h后样品以无定型碳形式存在,透光性好,呈现多孔结构,比表面积为1065m2·g-1,孔容为0.91 cm3·g-1,且孔...  相似文献   

3.
制备具有高比表面积及良好导电性的含氮碳材料是提高超级电容器电化学性能的重要途径.文章将三聚氰胺甲醛树脂预聚体及十六烷基三甲基溴化铵(CTAB)改性的氧化石墨烯(GO)复合,经水热反应、碳化及活化等步骤制备了三聚氰胺/石墨烯复合碳材料,通过XRD、BET、孔径表征、循环伏安法和交流阻抗等方法对碳材料的物相结构和电化学性能进行表征测试,研究复合碳材料的制备条件对电化学性能的影响.结果显示,碳材料以介孔为主,平均孔径为3.62 nm,比表面积为497 m2·g-1;在CTAB与GO质量比为1∶1,p H=9,条件下制得的复合碳材料,在6 mol·L-1KOH电解液中的质量比电容为113 F·g-1.  相似文献   

4.
聚苯乙烯微球(PST)作模板成功地制备出了三维(3D)多孔LiFePO4锂电池正极材料,并与传统固相法制备的LiFePO4比较,分析形貌、性能差异.结果显示,固相法合成的LiFePO4近似呈球形,颗粒大小不均,平均粒径约80~220nm.而模板法合成产物具有3D多孔结构,孔径较为均匀.BET测试显示,3D多孔LiFePO4比表面积较大,为11.239 8m2/g,单孔体积为0.034cm3/g,而固相法合成产物比表面积为2.003 2m2/g,单孔体积为0.006cm3/g.因此,3D多孔LiFePO4为锂电池中锂离子嵌入和脱出提供便利通道.电化学性能显示,两种方法在3.3~3.5V电压区间有一个较好充电和放电平台,固相法最大充放电比容量为60~70mAh·g-1,而模板法合成的多孔材料其稳定性较好,充放电比容量基本稳定在170mAh·g-1左右.电化学阻抗谱(EIS)分析,多孔的LiFePO4材料其欧姆接触电阻(R1)、电化学反应的电荷转移电阻(R2)和半无限边界条件下的扩散阻抗(W1)较之固相法合成LiFePO4材料均小,3D多孔结构有利于减少因阻抗引起的电池容量的损耗,增强电池的稳定性,提高可逆比容量.  相似文献   

5.
以氧化铁为铁源,通过简单的固相碳热法制备LiFePO4-MWCNTs复合正极粉体材料.利用XRD和SEM表征LiFePO4-MWCNTs复合材料的结构和表面形貌.利用EIS、CV和充放电测试实验测量LiFePO4-MWCNTs复合材料的电化学性能.XRD结果显示复合材料为橄榄石型的磷酸铁锂纯相,多壁碳管在正极材料中将颗粒相连,增加导电面积,形成三维网络结构,为颗粒之间提供附加的导电通道.通过添加质量分数为5%的多壁碳管的方法对LiFePO4正极材料导电通道进行改善.在0.5C充放电速率下首次放电比容量可以达到151.6mAh/g,充放电50次后,放电比容量还能保持在145.5mAh/g,在1C充放电速率下比容量保持在140mAh/g,2C时比容量保持在130mAh/g.随着充放电速率的增加,锂离子电池的性能也更加优越.  相似文献   

6.
以锐钛矿型TiO_2和LiOH·H_2O为主要原料,采用球磨喷雾技术辅助高温固相法合成了钛酸锂/石墨烯复合材料.使用X射线衍射(XRD)、扫描电子显微镜(SEM)对样品进行物相分析和形貌表征,通过恒流充放电和循环伏安测试对其电化学性能进行表征.结果表明:通过该方法制备得到了结晶度高、呈微球形的纯相钛酸锂粉体;掺入石墨烯后,物相结构并未发生改变,且未见其他杂质出现,而晶粒尺寸减小,晶粒形貌由规则外形变为近球形.该种结构改变导致钛酸锂材料的锂离子扩散系数由2.64μm~2/s提高至5.82μm~2/s,是电化学性能提高的内在原因.充放电测试结果表明,首次放电比容量由162mA·h/g提高到182mA·h/g,有望今后得到应用.  相似文献   

7.
为了提高锂离子电池锡基负极材料的比容量,以SnCl_4·5H_2O和石墨烯为原料,通过气相沉积法和高温烧结制备了SnO_2/石墨烯复合材料,并研究了不同烧结温度对SnO_2/石墨烯复合材料电化学性能的影响. SnO_2颗粒沉积并嵌入在石墨烯的层间,石墨烯的层状结构能够缓冲SnO_2的体积膨胀,进而有效提高材料的循环稳定性.利用电子扫描显微镜、X线能谱和X线衍射等表征方法和循环伏安等电化学性能测试方法对材料进行表征和分析.结果表明:当烧结温度为400℃时,材料的电化学性能最好,在电流密度为100 mA/g时,充放电循环50周后,其放电比容量仍能保持在716.6 mA·h/g;在电流密度为1 A/g时,放电比容量为431.9 mA·h/g.因此,该材料在商用锂离子电池领域具有潜在的应用前景.  相似文献   

8.
开发了一种简单、经济、环保、利用生物质快速生产具有优良电化学性能的碳材料的方法。利用梧桐树叶作为生物质原料制备多孔碳材料,对其结构、形貌和电化学性能进行分析和测试。结果表明:以梧桐叶为原料,碱碳比为3,活化温度为800℃,活化时间为2 h时,制备的多孔碳材料具有大的BET比表面积,其值为2 178 m2/g,孔径分布为2.5 nm,比电容达到304 F/g。当电流密度由0.25 A/g增加至20 A/g时,样品的容量保持率为82.6%。以树叶为原料制备的多孔碳材料展示出高电容和优异的倍率特性,有望在超级电容器等领域得到重要应用。  相似文献   

9.
通过自制的连续式反应器,制备出前驱体β-Co(OH)2和CoOOH后,分别与LiOH.H2O混合研磨压块煅烧,制备出锂离子电池正极材料LiCoO2.通过DTA-TG、XRD、SEMI、R等分析技术对材料的结构进行了表征和比较,并对材料的电化学性能进行了比较研究.  相似文献   

10.
复合碳源包覆对LiFePO4/C正极材料性能的影响   总被引:1,自引:0,他引:1  
采用固相合成法在惰性气氛下合成了LiFePO4/C复合正极材料,采用比表面积(SSA)、X射线衍射(XRD)、扫描电镜(SEM)以及电化学测试等手段对合成样品进行了结构表征和性能测试;考察了采用蔗糖、柠檬酸、蔗糖与炭黑掺杂、蔗糖柠檬酸与炭黑掺杂等不同碳源对最终复合正极材料性能的影响。结果表明,当采用蔗糖柠檬酸与炭黑的复合碳源时,正极材料在碳含量相近的情况下比表面积得到了控制,粒度分布和振实密度没有明显的变化,0-1C比容量达154mAh/g,1C比容量达到了142mAh/g;但是采用复合碳源,材料的初始内阻和极化程度有所增大。  相似文献   

11.
以改进Hummers法制备的氧化石墨烯作为载体,运用简单化学沉积并加以热处理制备硫/氧化石墨烯(H-GO/S)复合材料。采用傅里叶红外光谱仪(FT-IR)、X线衍射仪(XRD)、透射电子显微镜(TEM)、热质量分析仪(TGA)等表征手段对H-GO/S复合材料的微观结构、形貌和组成进行表征;同时运用恒流充放电和循环伏安对电极材料进行电化学性能测试。在0.1 C倍率下H-GO/S复合材料首次放电比容量达1 060 m A·h/g,20次循环之后,放电比容量趋向稳定,160次循环后放电比容量仍可达到620 m A·h/g,衰减率仅为0.068%,库伦效率始终保持在97%以上。以上结果表明H-GO/S复合材料具有优良的循环稳定性以及比较高的库伦效率。  相似文献   

12.
采用优化合成的高比表面积和多微孔结构的活性炭,通过加热的方法使单质硫升华并沉积到活性炭微孔中,得到锂硫电池正极用硫碳复合材料.通过X射线衍射、扫描电子显微镜和比表面积表征复合材料的结构、表面形貌和比表面特性.循环伏安测试表明,复合材料在2.05V和2.35V时存在两个还原峰,在2.4V时存在一个氧化峰.充放电循环实验表明,单质硫在100mA·g-1的电流密度下首次放电比容量高达1352.5mA·h·g-1,硫的利用率达到了80.9%,循环40周后比容量还保持在800.7mA·h·g-1,表现出良好的循环稳定性.  相似文献   

13.
研究了纳米碳对DMcT-PAn正极材料的电化学性能的影响.实验结果表明:DMcT-PAn正极材料的电化学氧化还原电流随着纳米碳含量的增加而增大;纳米碳使聚苯胺(PAn)膜的第2个氧化还原峰(位于0~0.2 V)电位发生正移,而微米级碳的存在使得PAn膜的氧化还原电位发生负移,因此,纳米碳主要是影响复合材料中聚苯胺的电化学性能;同时,在纳米碳的作用下,DMcT-PAn的电化学反应阻抗变小,复合膜的电化学容量增加,说明纳米碳对DMcT-PAn电化学反应有电催化作用;当纳米碳质量分数为8%~15%时,含碳复合膜的电化学容量比本征DMcT-PAn膜的电化学容量高,电化学反应阻抗Ret较低;纳米碳可有效改善DMcT-PAn正极材料的电化学性能.  相似文献   

14.
便携式电子设备的逐渐普及促使储能器件朝着柔性化、高储能方向发展。锂硫电池因拥有高比容量、能量密度高、低成本、环境友好等优势,被认为是极具潜力的下一代商用化二次电池,然而,其实用化仍受中间产物多硫化物的"穿梭效应"、正极活性物质硫的体积膨胀和低导电性等因素的限制,具有高导电性的碳纳米材料常被用于与硫复合来解决以上问题。本文针对采用碳纳米纤维、碳纳米管、石墨烯作为基体,重点介绍了硫与以上碳纳米材料的复合和相应的硫-纳米碳复合柔性正极材料的设计制备,探讨了提高正极硫含量和利用率的策略,分析了正极材料结构性质与电池电化学性能之间联系,最后对硫-纳米碳复合柔性正极材料的发展前景和面临的挑战进行了展望。  相似文献   

15.
研究了银包覆和银-碳复合包覆对硅的结构和电化学性能的影响。采用XRD和TEM等手段分析了样品的结构和形貌,并采用恒电流充放电测试、循环伏安法和电化学阻抗法研究了改性处理前后硅负极的电化学性能。结果表明,硅/Ag/碳复合负极材料中,Ag纳米微粒以晶体的形式分布在硅颗粒的表面,一层无定形沥青炭包覆在硅/Ag复合颗粒的表面,这有利于提高硅颗粒的结构稳定性。电化学测试表明,与硅相比,硅/Ag/炭复合负极材料的电化学阻抗减小,电化学极化减弱,电化学反应的可逆性和循环寿命显著提高,第40次循环的比容量保持在390 m Ah g-1。  相似文献   

16.
以纳米硅(Si)、天然石墨(NG)和蔗糖为前驱体通过球磨和裂解制备了具有壳核结构的碳硅复合材料(Si/NG/DC).用X射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)表征了复合材料的组成和形貌结构.恒电流充放电测试表明,Si/NG/DC复合材料表现出较好的电化学性能,它的最高可逆容量达730mA.h.g-1,在测试的45个循环中,从第二个循环开始,容量没有出现明显衰退.交流阻抗(EIS)测试表明,Si/NG/DC导电性的提高和电极结构在循环过程中的稳定性是其电化学性能改善的原因.  相似文献   

17.
通过简单的固相法和液相法,分别制备出石墨相氮化碳(g-C3N4)表面改性的商品化LiCoO2复合材料,采用扫描电子显微镜观察改性后的材料,发现g-C3N4都均匀地包裹在LiCoO2表面。两种g-C3N4-LiCoO2复合材料被用作锂离子电池的正极材料,电化学测试结果显示,固相法制得的g-C3N4-LiCoO2复合材料在0.2 C的倍率下充放电测试,首次比容量达167 mA·h·g-1,循环80次后,比容量仍达132 mA·h·g-1,高于未经g-C3N4包裹的纯LiCoO2(98 mA·h·g-1);液相法制得的Y-C3N4-LiCoO2复合材料循环稳定性明显优于同类材料,循环80次后容量保持率均在95%以上。试验证实,g-C3N4表面改性的策略具有一定的实用价值,改性后,材料优异的电化学性能归因于g-C3N4的包裹处理,这不仅增强了固体电解质界面(SEI)的稳定性,也抑制了锂离子嵌入/脱出电极材料时引起LiCoO2体积的变化。  相似文献   

18.
锂硫(Li-S)电池因高理论能量密度在众多新型电池中受到广泛关注,但存在硫正极导电性差、多硫化物的穿梭等问题,制约其商业应用。针对上述问题,本次试验制备苘麻基生物碳(AC),通过熔融扩散法与升华硫(S)复合形成碳/硫复合材料(AC@S),并使用碳涂层法在正极材料表面涂覆多壁碳纳米管(MWCNTS)作为Li-S电池正极片与隔膜之间的夹层,进一步抑制多硫化物的溶解和扩散,阻止穿梭效应,减小活性物质的损失,提高Li-S电池的容量和循环性能。AC@S+MWCNTs电池首次放电容量为1 242.8 mAh·g-1,循环150次后仍保持982.4 mAh·g-1,相同条件下比AC@S高出275.0 mAh·g-1。将MWCNTS涂层与正极材料结合设计工艺简单,成本低,且可提高材料导电性、抑制多硫化物的穿梭效应,表现出良好的循环性能和库伦效率,是一种解决Li-S电池穿梭效应的有效途径。  相似文献   

19.
金属有机骨架化合物是一种由金属离子与有机配体通过配位键或共价键合成的新型的电极材料。然而,其低的电子导电率和严重的不可逆锂存储制约了该材料在锂电池领域的实际应用。石墨烯具有一系列独特属性,如高的导电率、高表面积、化学稳定性,机械强度和柔韧性,多孔结构。通常用来掺杂在电极材料中以提高循环性能和增加电池的容量。在本实验中,我们研究了Cu-MOF掺杂石墨烯(Cu-MOF/RGO)作为锂电负极材料的电化学性能。结果表明,在充放电电流密度为50 mA g-1时,充放电循环50次后,材料的放电比容量可达到520 mAh g-1。同时该材料也显示出较好的倍率性能和较高的库仑效率。由此可以看出Cu-MOF/RGO是一种具有前景的锂离子电池负极材料。  相似文献   

20.
将碳纸与氧化还原反应法制备的纳米MnO_2通过液相沉积法形成新的复合电极材料,采用循环伏安和交流阻抗测试技术对复合电极材料进行电化学分析,研究结果表明:碳纸/纳米MnO_2复合电极材料呈花瓣状开放结构,有利于提高复合电极的比表面积;碳纸基体沉积时间为1 h时,复合电极的电化学性能最稳定;但随着扫描速率的增加,复合电极的比电容呈下降趋势,且沉积时间越长,复合电极电容性的稳定也越差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号