共查询到4条相似文献,搜索用时 0 毫秒
1.
L. De Petrocellis V. Di Marzo G. Cimino 《Cellular and molecular life sciences : CMLS》1993,49(1):57-64
The participation of protein kinase C (PKC) in the regeneration of tentacles ofHydra vulgaris was studied. Regeneration was induced by 1,2-sn-dioctanoyl-glycerol (diC8) and the novel diterpenoidic diacylglycerol verrucosin B (VB), a potent PKC activator extracted from marine sources. VB substantially increasedHydra average tentacle number (ATN) at concentrations 10,000 times lower than those needed for diC8 to exert an analogous effect. When both synthetic and natural VB analogues were tested, the structure/activity relationship found inHydra tentacle regeneration was identical to that known for DAG-induced activation of PKC in vitro. VB-induced increase of ATN was strongly counteracted by the PKC inhibitors sphingosine and A3, but was not synergic with a tenfold increase of extracellular Ca2+ concentration or with an increase of intracellular Ca2+ concentration obtained either with the ionophore A23187 or with thapsigargin. This suggested the involvement of a non-Ca2+-dependent PKC in VB-triggeredHydra tentacle regeneration. The involvement of phospholipase A2 (PLA2) activation inHydra regenerative processes was studied using the novel site-specific inhibitor of the enzyme, oleyloxyethylphosphorylcholine (OOPC), which brought about a striking inhibition of ATN in the low molar range. This effect was reversed by arachidonic acid (AA), while an enhancement of ATN was also observed with an inhibitor of AA uptake from membrane phospholipids, thus suggesting that PLA2-catalysed liberation of AA is involved inHydra tentacle regeneration. OOPC also blocked verrucosin B-induced PKC-mediated enhancement of ATN, thus suggesting that this effect is also mediated by PLA2 activation. ATN was increased also by compound 48/80, a direct activator of pertussis toxin-sensitive GTP-binding proteins, and this effect was counteracted by pertussis toxin pretreatment. None of the known AA cascade inhibitors exhibited an effect on ATN comparable to that exerted by OOPC, but, surprisingly, the cycloxygenase inhibitor indomethacin strongly enhanced ATN, thus suggesting that prostanoids might effect a negative control onHydra regenerative processes. This represents the first attempt so far reported to study the implication of more than one biochemical pathway as a signalling event in the hydroid regenerative processes. 相似文献
2.
Incubation of molting glands from the crayfishProcambarus clarkii (Y-organ) and the silkwormBombyx mori (prothoracic gland) with 23,24-[2H4]-2-deoxyecdysone resulted in the production of deutero-ecdysone; this biotransformation was inhibited in the presence of xanthurenic acid. When the experiments were performed under an18O2 atmosphere, the18O atom was introduced into ecdysone, as confirmed by mass spectrometry. We therefore suggest that xanthurenic acid inhibits P-450-dependent hydroxylation of 2-deoxyecdysone. However, deutero-2-deoxyecdysone was not converted to 3-dehydroecdysone when using Y-organs in vitro, although it is a major product. We therefore conclude that the biosynthetic pathway of ecdysteroids inP. clarkii branches at an early step. 相似文献
3.
4.
The facultative intracellular pathogen Salmonella enterica resides in a special membrane compartment of the host cell and modifies its host to achieve intracellular survival and proliferation. The type III secretion system encoded by Salmonella pathogenicity island 2 (SPI2) has a central role in the interference of intracellular Salmonella with host cell functions. SPI2 function affects antimicrobial defense mechanisms of the host, intracellular transport processes, integrity and function of the cytoskeleton and host cell death. These modifications are mediated by translocation of a large number of effector proteins by the SPI2 system. In this review, we summarize recent work on the cellular phenotypes related to SPI2 function and contribution of SPI2 effector proteins to these manipulations. These studies reveal a complex set of pathogenic interferences between intracellular Salmonella and its host cells.Received 11 June 2004; received after revision 8 July 2004; accepted 12 July 2004 相似文献