首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
半导体光电结构材料广泛应用于信息、照明、交通、能源、医疗、军事等领域.介绍了厦门大学近年来在半导体光电结构材料研究的进展,着重介绍高Al组分AlGaN、高In组分InGaN、GaN基半导体、Si基半导体、ZnO基半导体等结构材料研发中所取得的进展及其在大功率LED、紫外LED、激光器、探测器、太阳能电池等光电器件中的应用.  相似文献   

2.
新型人工电磁媒质具备自然界材料所不具备的一些电磁响应特性,因而成为当今科学研究的前沿.设计了一种新型温控THz宽带调频人工电磁媒质,在THz波段下其谐振频率能随温度实现连续可调.该人工电磁媒质由一系列金属SRR和置入SRR开口处的半导体InSb材料构成,通过改变温度可实现调频现象,调频范围宽达50%.温度的升高引起半导体材料载流子数目的增加,近而影响InSb的介电性质,从而实现谐振频率的移动.该温控宽带调频人工电磁媒质为太赫兹波段调频设备的实现提供了一定的借鉴意义.  相似文献   

3.
Active terahertz metamaterial devices   总被引:1,自引:0,他引:1  
Chen HT  Padilla WJ  Zide JM  Gossard AC  Taylor AJ  Averitt RD 《Nature》2006,444(7119):597-600
The development of artificially structured electromagnetic materials, termed metamaterials, has led to the realization of phenomena that cannot be obtained with natural materials. This is especially important for the technologically relevant terahertz (1 THz = 10(12) Hz) frequency regime; many materials inherently do not respond to THz radiation, and the tools that are necessary to construct devices operating within this range-sources, lenses, switches, modulators and detectors-largely do not exist. Considerable efforts are underway to fill this 'THz gap' in view of the useful potential applications of THz radiation. Moderate progress has been made in THz generation and detection; THz quantum cascade lasers are a recent example. However, techniques to control and manipulate THz waves are lagging behind. Here we demonstrate an active metamaterial device capable of efficient real-time control and manipulation of THz radiation. The device consists of an array of gold electric resonator elements (the metamaterial) fabricated on a semiconductor substrate. The metamaterial array and substrate together effectively form a Schottky diode, which enables modulation of THz transmission by 50 per cent, an order of magnitude improvement over existing devices.  相似文献   

4.
为了解决传统太赫兹(THz)探测器吸收效率低,频率范围小的问题,提出将双层超表面吸收阵列结构与钽酸锂热释电探测器相贴合,构成宽带太赫兹超表面热释电探测器。采用MATLAB和CST联合仿真的优化方法对超表面结构进行按需优化;使用ANSYS对热释电探测器进行仿真分析,得到敏感层、绝热层等特征参数对太赫兹热释电探测器的温度变化率以及响应电流的影响。结果表明,采用超表面阵列结构提高了全THz波段的探测性能,凳型热释电探测器在给定条件下的平均热释电电流输出为31.52 pA。使用超表面作为吸收结构可以使热释电探测器具有连续且高效的吸波特性,为宽带太赫兹探测器的设计提供参考。  相似文献   

5.
High-power terahertz radiation from relativistic electrons   总被引:14,自引:0,他引:14  
Carr GL  Martin MC  McKinney WR  Jordan K  Neil GR  Williams GP 《Nature》2002,420(6912):153-156
Terahertz (THz) radiation, which lies in the far-infrared region, is at the interface of electronics and photonics. Narrow-band THz radiation can be produced by free-electron lasers and fast diodes. Broadband THz radiation can be produced by thermal sources and, more recently, by table-top laser-driven sources and by short electron bunches in accelerators, but so far only with low power. Here we report calculations and measurements that confirm the production of high-power broadband THz radiation from subpicosecond electron bunches in an accelerator. The average power is nearly 20 watts, several orders of magnitude higher than any existing source, which could enable various new applications. In particular, many materials have distinct absorptive and dispersive properties in this spectral range, so that THz imaging could reveal interesting features. For example, it would be possible to image the distribution of specific proteins or water in tissue, or buried metal layers in semiconductors; the present source would allow full-field, real-time capture of such images. High peak and average power THz sources are also critical in driving new nonlinear phenomena and for pump-probe studies of dynamical properties of materials.  相似文献   

6.
超宽禁带半导体β-Ga2O3的带隙约为4.9 eV,是理想的日盲深紫外光电探测材料.最近,研究者利用β-Ga2O3薄膜,成功研制了四象限结构位置敏感日盲深紫外光电探测器.该研究为Ga2O3在深紫外光、X射线定位或成像等领域的实际应用提供了思路.  相似文献   

7.
The novel material of photonic crystal makes it possible to control a photon, and the photonic integration will have breakthrough progress due to the application of photonic crystal. It is based on the photonic crystal device that the photonic crystal integration could be realized. Therefore, we should first investigate photonic crystal devices based on the active and the passive semiconductor materials, which may have great potential application in photonic integration. The most practical and important method to fabricate two-dimensional photonic crystal is the micro-manufacture method. In this paper, we summarize and evaluate the fabrication methods of two-dimensional photonic crystal in near-infrared region, including electron beam lithography, selection of mask, dry etching, and some works of ours. This will be beneficial to the study of the photonic crystal in China.  相似文献   

8.
叙述了采用核技术方法探查隐藏爆炸物和放射性材料的优越性及其特点,重点介绍了8类主动式中子质询技术,对它们探查爆炸物的适用范围进行了剖析,对采用伽玛法的非中子质询技术作了一般性讨论。概括了各类已商用化工业中子源和伽玛射线探测器,论述了它们应用于安检系统的长处和不足。分析了两类典型的隐藏爆炸物安检问题,指出一个理想的爆炸物探查系统应具备的11项特性。介绍了国际上最受重视的伴随粒子成像和脉冲快中子系统的研制进展。简要描述了有别于主动式探查爆炸物的被动式放射性材料探查方法。指出隐藏爆炸物品和放射性物质的检查没有一  相似文献   

9.
单层石墨烯具有可调的太赫兹电导,有望应用于制作新型太赫兹器件,然而这种调谐的变化范围有限,通过多层石墨烯的堆叠可以拓展石墨烯太赫兹器件的性能上限。本文通过太赫兹时域光谱研究了石英衬底上不同层数堆叠的石墨烯的太赫兹透过特性,并使用Drude模型以及菲涅尔定律对实验结果进行了理论模拟。实验数据与理论结果的匹配表明:随机堆叠的多层石墨烯在太赫兹波段可以看作没有电子耦合的多个单层石墨烯,其太赫兹电导具有更宽的调谐范围,同时化学掺杂可以进一步提高材料的载流子浓度,从而获得更高的太赫兹电导。  相似文献   

10.
本文提出一种用于光谱测量的保偏光纤干涉结构.该结构基于保偏光纤、法拉第旋转镜、偏振分束器和保偏光环形器等光纤器件的.结构中采用的压电陶瓷光纤相位调制器,使干涉工作在光程线性调制区域,以减小压电陶瓷非线性光程调制产生的误差.结构中的法拉第旋转镜、保偏光纤及保偏光器件的结合使用保证了传输光的偏振稳定性,消除偏振衰落效应的影响,保证了稳定的光谱测量结果.实验测试了SLD光谱,测得结果和光谱仪测得结果一致,结果表明该系统测量光谱的稳定性.该系统可用于提供光纤传感器和通信应用中常用光源(如二极管激光器、LED和半导体激光器等)的光谱分析.  相似文献   

11.
利用平行分束偏光镜、1/2波片、起偏器、检偏器的恰当组合,给出了一套偏振光干涉实验装置。经过分析,该装置不仅能完成偏振光的干涉实验,而且可以测定晶体的折射率或折射率分布情况,通过测量干涉光强,当在单光路中置入折射率均匀晶体时,可以计算出相应的折射率;如果在两个光路中置入同一非均匀折射率晶体,则可以测定该晶体的折射率分布情况,分析了可能的误差来源,并提出了装置的优化设计方案,指出了实验系统的优缺点。  相似文献   

12.
太赫兹科学技术及其应用   总被引:1,自引:0,他引:1  
近20年来,随着低尺度半导体技术、超快激光技术以及超快光电子技术的飞速发展,太赫兹科学技术表现出了极大的应用潜力.作为一种新型的相干光源,太赫兹辐射在物理化学、信息和生物学等基础研究领域,以及材料、国防、医学等技术领域具有重大的科学价值和广泛的应用前景.文章全面总结了目前太赫兹技术在基础研究领域和民用技术研究领域的应用,以及太赫兹技术在保密通信、反隐身雷达、化学和生物制剂的探测等领域的重要应用前景.  相似文献   

13.
Terahertz semiconductor-heterostructure laser   总被引:18,自引:0,他引:18  
Semiconductor devices have become indispensable for generating electromagnetic radiation in everyday applications. Visible and infrared diode lasers are at the core of information technology, and at the other end of the spectrum, microwave and radio-frequency emitters enable wireless communications. But the terahertz region (1-10 THz; 1 THz = 10(12) Hz) between these ranges has remained largely underdeveloped, despite the identification of various possible applications--for example, chemical detection, astronomy and medical imaging. Progress in this area has been hampered by the lack of compact, low-consumption, solid-state terahertz sources. Here we report a monolithic terahertz injection laser that is based on interminiband transitions in the conduction band of a semiconductor (GaAs/AlGaAs) heterostructure. The prototype demonstrated emits a single mode at 4.4 THz, and already shows high output powers of more than 2 mW with low threshold current densities of about a few hundred A cm(-2) up to 50 K. These results are very promising for extending the present laser concept to continuous-wave and high-temperature operation, which would lead to implementation in practical photonic systems.  相似文献   

14.
Ishii D  Kinbara K  Ishida Y  Ishii N  Okochi M  Yohda M  Aida T 《Nature》2003,423(6940):628-632
Various properties of semiconductor nanoparticles, including photoluminescence and catalytic activity, make these materials attractive for a range of applications. As nanoparticles readily coagulate and so lose their size-dependent properties, shape-persistent three-dimensional stabilizers that enfold nanoparticles have been exploited. However, such wrapping approaches also make the nanoparticles insensitive to external stimuli, and so may limit their application. The chaperonin proteins GroEL (from Escherichia coli) and T.th ('T.th cpn', from Thermus thermophilus HB8) encapsulate denatured proteins inside a cylindrical cavity; after refolding, the encapsulated proteins are released by the action of ATP inducing a conformational change of the cavity. Here we report that GroEL and T.th cpn can also enfold CdS semiconductor nanoparticles, giving them high thermal and chemical stability in aqueous media. Analogous to the biological function of the chaperonins, the nanoparticles can be readily released from the protein cavities by the action of ATP. We expect that integration of such biological mechanisms into materials science will open a door to conceptually new bioresponsive devices.  相似文献   

15.
针对焦平面(FPA)探测器品种规格大量发展的问题,提出焦平面探测器品种优化的技术途径,选取了对焦平面探测器性能及应用敏感的材料、辐射灵敏度、工作温度、可获得性、成本等因素作为品种优化的因素,提出了指导探测器优化的材料选择域、性能定位、规格选择等知识模型,建立了支持探测器定量优选的矩阵数学模型,构建了定性与定量相结合的探测器优选方法,从130多种规格的探测器中优化选取了4个焦平面探测器作为标准基型探测器,4个标准基型探测器可覆盖大部分军事应用.该方法对其它产品的品种优化也有借鉴作用.  相似文献   

16.
Three-dimensional optical metamaterial with a negative refractive index   总被引:3,自引:0,他引:3  
Metamaterials are artificially engineered structures that have properties, such as a negative refractive index, not attainable with naturally occurring materials. Negative-index metamaterials (NIMs) were first demonstrated for microwave frequencies, but it has been challenging to design NIMs for optical frequencies and they have so far been limited to optically thin samples because of significant fabrication challenges and strong energy dissipation in metals. Such thin structures are analogous to a monolayer of atoms, making it difficult to assign bulk properties such as the index of refraction. Negative refraction of surface plasmons was recently demonstrated but was confined to a two-dimensional waveguide. Three-dimensional (3D) optical metamaterials have come into focus recently, including the realization of negative refraction by using layered semiconductor metamaterials and a 3D magnetic metamaterial in the infrared frequencies; however, neither of these had a negative index of refraction. Here we report a 3D optical metamaterial having negative refractive index with a very high figure of merit of 3.5 (that is, low loss). This metamaterial is made of cascaded 'fishnet' structures, with a negative index existing over a broad spectral range. Moreover, it can readily be probed from free space, making it functional for optical devices. We construct a prism made of this optical NIM to demonstrate negative refractive index at optical frequencies, resulting unambiguously from the negative phase evolution of the wave propagating inside the metamaterial. Bulk optical metamaterials open up prospects for studies of 3D optical effects and applications associated with NIMs and zero-index materials such as reversed Doppler effect, superlenses, optical tunnelling devices, compact resonators and highly directional sources.  相似文献   

17.
Lasers are usually described by their output frequency and intensity. However, laser operation is an inherently nonlinear process. Knowledge about the dynamic behaviour of lasers is thus of great importance for detailed understanding of laser operation and for improvement in performance for applications. Of particular interest is the time domain within the coherence time of the optical transition. This time is determined by the oscillation period of the laser radiation and thus is very short. Rigorous quantum mechanical models predict interesting effects like quantum beats, lasing without inversion, and photon echo processes. As these models are based on quantum coherence and interference, knowledge of the phase within the optical cycle is of particular interest. Laser radiation has so far been measured using intensity detectors, which are sensitive to the square of the electric field. Therefore information about the sign and phase of the laser radiation is lost. Here we use an electro-optic detection scheme to measure the amplitude and phase of stimulated radiation, and correlate this radiation directly with an input probing pulse. We have applied this technique to semiconductor quantum cascade lasers, which are coherent sources operating at frequencies between the optical (>100 THz) and electronic (<0.5 THz) ranges. In addition to the phase information, we can also determine the spectral gain, the bias dependence of this gain, and obtain an insight into the evolution of the laser field.  相似文献   

18.
针对宽禁带半导体紫外探测器响应不够灵敏和响应度偏低等问题,将具有高功函数的Pt电极引入TiO2紫外探测器,采用溶胶凝胶法制备了纳米TiO2薄膜。以金属Pt为电极,采用磁控溅射的方法,将Pt电极溅射在TiO2纳米薄膜上,制作了MSM (Metal Semiconductor Metal)型紫外探测器件。在5 V偏压下,探测器的暗电流为4.5 nA,260 nm波长光照下的光电流为5.7 μA。在260 nm的紫外光照射下,探测器的响应度达到最大值,约为447A/W,与其他紫外探测器(200 A/W左右)的响应度均值相比有了很大的提升。最后,设计外围电路,制作出功能完整的紫外强度测试仪。实验表明,该探测器成功地解决了传统宽禁带半导体紫外探测器灵敏度及响应度偏低等问题。  相似文献   

19.
We propose a method to bend a self-collimated beam in a photonic crystal. The beam bending relies on the gradual variation of the constitutive parameters of the photonic crystal. A new Y-shaped beam splitter is designed with a composite structure constructed using two graded photonic crystals. We demonstrate that the incident beam is divided into two output beams by the designed splitter. The power ratio of the two beams can be adjusted easily by changing the location of the input beam.  相似文献   

20.
对叶片涂敷NiCoCrAlY+YSZ硬涂层,研究具有硬涂层的大小叶盘的动力学模型和振动特性,主要研究硬涂层对大小叶盘的阻尼减振性能的影响.首先,利用复模量理论和Oberst梁理论,建立了涂层大小叶盘结构的解析模型;然后,基于Gram-Schmidt法和Rayleigh-Ritz法,求解涂层大小叶盘结构的模态特性和受迫响应.结果表明:硬涂层阻尼对大小叶盘固有频率的影响很小,但能使模态损耗因子提高4倍,说明硬涂层可以有效提高大小叶盘的阻尼性能;此外,涂敷硬涂层可以有效抑制其受迫响应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号