首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 375 毫秒
1.
设H为Hilbert空间,N为H上的完备的子空间套,AlgN为相应的套代数,若线性映射δ:AlgN→AlgN满足,任给a,b∈AlgN,当ab=0时,有δ([a,b])=[δ(a),b]+[a,δ(b)],则存在r∈AlgN,使得任给a∈AlgN,有δ(a)=ra-ar+τ(a)I,其中线性映射τ:AlgN→C满足,任给a,b∈AlgN,当ab=0时,τ([a,b])=0。  相似文献   

2.
设U=Tri(A,M,B)是三角代数,δ,τ为U→U上的两个映射(无可加性或线性假设).利用矩阵分块的方法证明了:如果对任意的a,b∈U,有δ([a,b])=[δ(a),b]+[a,τ(b)],则τ=σ+L,δ=θ+f,其中:σ:U→U是可加导子;L:U→Z(U)是模可加的中心值映射;θ:U→U是关于σ的可加广义导子;f:U→Z(U)是中心值映射,且f([a,b])=0.  相似文献   

3.
设T=Tri(A,M,B)为三角代数,δ:T→T是一个映射(没有可加性的假设).利用代数分解的方法证明了:如果对任意的A,B∈T,且A与B至少有一个是幂等元,有δ(AB)=δ(A)B+Aδ(B),则δ是一个可加导子.并得到了上三角矩阵代数和套代数上此类局部可导非线性映射的具体形式.  相似文献   

4.
设X是维数大于2的Banach空间.讨论B(X)上的线性广义ξ-Lie导子δ(ξ≠0,-1)的 结构,采用了纯代数计算的方法,得到了当ξ=1时,δ=φ+τ,其中φ为广义导子,τ:B(X)→CI 为线性映射,并且当AB为不等于I的固定幂等元时,有τ([A,B])=0;当ξ≠1时,δ=ψ+φ,其中ψ为左中心化子,φ为内导子.  相似文献   

5.
设M是Hilbert空间H上维数大于1的因子von Neumann代数,用代数分解方法证明了:如果非线性映射δ:M→M满足对任意的A,B,C∈M且ABC=0,有δ([[A,B],C])=[[δ(A),B],C]+[[A,δ(B)],C]+[[A,B],δ(C)],则存在可加导子d:M→M,使得对任意的A∈M,有δ(A)=d(A)+τ(A)I,其中τ:M→瓘I是一个非线性映射,满足对任意的A,B,C∈M且ABC=0时,有τ([[A,B],C])=0.  相似文献   

6.
称一个线性映射δ:A→A为零点可导的,若满足A,B∈!且AB=0都有δ(A)B+Aδ(B)=0,设A是Banach空间X上的一个子代数,且A中一秩算子线性张的值域在X中是稠密的.证明了如果含有某些性质的代数A上的线性映射δ在零点可导,那么对任意的A∈A,都有δ(A)="(A)+A,其中"是导子,∈F.特别地,若δ(I)=0,那么δ是可加导子.作为应用,证明了这个结论对于Jsl代数和B(X)上的标准算子都是成立的.  相似文献   

7.
本文研究了因子von Neumann代数M中套子代数algMβ上的广义内导子.证明了如果δ:algMβ→M是一个线性映射,且对任意A∈algMβ有δ(A)=XAY,其中X,Y∈M.那么δ是一个广义内导子当且仅当存在投影P∈β使得X=λP XP⊥,Y=μP⊥ PY,其中λ,μ∈C.并且证明了δ2=δδ是一个广义内导子的充分必要条件.  相似文献   

8.
设T=Tri(A,M,B)是三角代数,{δn}n∈N:T→T是一列映射(没有可加性的假设,其中δ0是恒等映射).若对任意的U,V∈T且U与V中至少有一个是幂等元,有δn(UV)=∑i+j=nδi(U)δj(V),则{δn}n∈N是T上可加的高阶导子.  相似文献   

9.
设N是复可分Hilbert空间H上的一个套,τ(N)是相应的套代数.在文章中,我们证明了每一个从τ(N)到其自身的范数连续的并且在零点σ-可导的线性映射δ为如下形式:δ(A)=ψ(A) λTA(A∈τ(N)),其中ψ为σ-导子,T为τ(N)中一个固定的可逆元且λ为一固定常数.  相似文献   

10.
设τ( N )是复可分Hilbert空间H上的套代数,(φ,ψ)是套代数τ( N )上的线性映射对。若对任意A,B∈τ(N )且AB=0,有φ(AB)=φ(A)B+Aψ(B)成立,则(φ,ψ)是广义内导子对。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号