首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immunology. The ins and outs of antigen processing and presentation   总被引:31,自引:0,他引:31  
R N Germain 《Nature》1986,322(6081):687-689
  相似文献   

2.
Class II MHC molecules can use the endogenous pathway of antigen presentation   总被引:14,自引:0,他引:14  
Models for antigen presentation have divided the world of antigens into two categories, endogenous and exogenous, presented to T cells by class I and class II major histocompatibility complex (MHC) encoded molecules, respectively. Exogenous antigens are though to be taken up into peripheral endosomal compartments where they are processed for binding to class II MHC molecules. Endogenous antigens are either synthesized or efficiently delivered to the cytoplasm before being partially degraded in an as yet undefined way, and complexed with class I MHC molecules. A useful phenotypic distinction between the two pathways has been the sensitivity to weak bases, such as chloroquine, which is a property only of the exogenous pathway. The fungal antibiotic brefeldin A (BFA), which blocks protein transport from the endoplasmic reticulum to the Golgi network, also blocks class I-restricted antigen-presentation, providing us with the corresponding marker of the endogenous pathway. Experiments with influenza virus antigens have supported the view that class II MHC molecules can present exogenous but not endogenous antigen, whereas the observation that class II MHC molecules present measles virus non-membrane antigens by a chloroquine-insensitive pathway suggests that this is not always the case. We show here that influenza A matrix protein can be effectively presented to class II-restricted T cells by two pathways: one of which is chloroquine-sensitive, BFA-insensitive, the other being chloroquine-insensitive and BFA-sensitive. Our results indicate that both class I and class II molecules can complex with antigenic peptides in a pre-Golgi compartment and favour a unified mechanism for MHC-restricted endogenous antigen presentation.  相似文献   

3.
L Adorini  E Appella  G Doria  F Cardinaux  Z A Nagy 《Nature》1989,342(6251):800-803
T cells recognize foreign proteins as peptides bound to self molecules encoded by the major histocompatibility complex (MHC). The kinetics of interaction between purified class II MHC molecules and peptides is unusual, in that the rate of association is very slow, but once formed, the complexes are extremely stable. This raises the question of how the antigen-presenting cell provides a sufficient number of free MHC binding sites to ensure T cell immunity. We present results suggesting that an exchange of peptide in MHC binding sites may take place under physiological conditions.  相似文献   

4.
Apolipoprotein-mediated pathways of lipid antigen presentation   总被引:1,自引:0,他引:1  
Peptide antigens are presented to T cells by major histocompatibility complex (MHC) molecules, with endogenous peptides presented by MHC class I and exogenous peptides presented by MHC class II. In contrast to the MHC system, CD1 molecules bind lipid antigens that are presented at the antigen-presenting cell (APC) surface to lipid antigen-reactive T cells. Because CD1 molecules survey endocytic compartments, it is self-evident that they encounter antigens from extracellular sources. However, the mechanisms of exogenous lipid antigen delivery to CD1-antigen-loading compartments are not known. Serum apolipoproteins are mediators of extracellular lipid transport for metabolic needs. Here we define the pathways mediating markedly efficient exogenous lipid antigen delivery by apolipoproteins to achieve T-cell activation. Apolipoprotein E binds lipid antigens and delivers them by receptor-mediated uptake into endosomal compartments containing CD1 in APCs. Apolipoprotein E mediates the presentation of serum-borne lipid antigens and can be secreted by APCs as a mechanism to survey the local environment to capture antigens or to transfer microbial lipids from infected cells to bystander APCs. Thus, the immune system has co-opted a component of lipid metabolism to develop immunological responses to lipid antigens.  相似文献   

5.
Proteolysis, proteasomes and antigen presentation.   总被引:42,自引:0,他引:42  
A L Goldberg  K L Rock 《Nature》1992,357(6377):375-379
Proteins presented to the immune system must first be cleaved to small peptides by intracellular proteinases. Proteasomes are proteolytic complexes that degrade cytosolic and nuclear proteins. These particles have been implicated in ATP-ubiquitin-dependent proteolysis and in the processing of intracellular antigens for cytolytic immune responses.  相似文献   

6.
Antigens are generally thought to be recognized by cytotoxic T lymphocytes as peptides in the context of class I major histocompatibility proteins complex, which are heterodimers of heavy chains noncovalently associated with beta 2-microglobulin (beta 2m). The highly polymorphic nature of the heavy chains and their resulting ability to present different sets of peptides has presumably evolved to allow potent immune responses against most pathogens. By contrast, the polymorphism of beta 2m is limited; seven alleles are known in the mouse and only one has been identified in humans. beta 2-Microglobulin was consequently thought to have only structural functions: namely, to ensure correct folding of class I molecules and their transport to the cell surface. Although beta 2m is not implicated directly in the formation of the peptide binding site, we report here that it participates in the selection of MHC class I molecule-associated peptides.  相似文献   

7.
In mammalian cells, short peptides derived from intracellular proteins are displayed on the cell membrane associated with class I molecules of the major histocompatibility complex (MHC). The surface presentation of class I-peptide complexes presumably alerts the immune system to intracellular viral protein synthesis. Peptides derived from the cytosol must reach the cisternae of the endoplasmic reticulum where they are required for the assembly of stable class I molecules, and it has been proposed that the products of the two MHC-encoded ATP-binding cassette (ABC) transporter genes function to deliver the peptides across the membrane of the endoplasmic reticulum. This idea is supported by experiments in which transfection of a human cell line defective in class I expression with a complementary DNA of one of these genes restored cell surface expression levels. Here we show that the complete phenotype of the mouse mutant cell line RMA-S, in which lack of surface expression of stable class I molecules correlates with an inability to present viral peptides originating in the cytosol, is repaired by the cDNA of the other transporter gene. These results are consistent with the possibility that the two transporter polypeptides form a heterodimer.  相似文献   

8.
A chromatin remodelling complex involved in transcription and DNA processing   总被引:44,自引:0,他引:44  
Shen X  Mizuguchi G  Hamiche A  Wu C 《Nature》2000,406(6795):541-544
  相似文献   

9.
Class I MHC molecules acquire peptides from endogenously synthesized proteins, whereas class II antigens present peptides derived from extracellular compartment molecules. This dichotomy is due to the fact that the invariant chain associates with class II molecules in the endoplasmic reticulum, preventing binding of endogenous peptides. The mutually exclusive binding of peptide and invariant chain to class II molecules suggests that the invariant chain might play a part in autoimmune disease.  相似文献   

10.
E Mellins  L Smith  B Arp  T Cotner  E Celis  D Pious 《Nature》1990,343(6253):71-74
Presentation of an exogenous protein antigen to helper (CD4+)T-lymphocytes by antigen presenting cells (APC) generally requires that the APCs degrade the native protein antigen into an immunogenic peptide, a process termed 'antigen processing', and that this peptide bind to a major histocompatibility complex (MHC) class II molecule. The complex of peptide and MHC molecule on the APC surface provides the stimulatory ligand for the alpha beta T cell receptor. The intracellular pathways and molecular mechanisms involved in the generation of the peptide-MHC complex are not well understood. Here, we describe several mutant APCs which are altered in their ability to present native exogenous protein antigens but effectively present immunogenic peptides derived from these proteins. The lesions in these mutants are not in the class II structural genes, but they affect the conformation of mature class II dimers.  相似文献   

11.
12.
13.
Most antigens must be processed intracellularly before they can be presented, in association with major histocompatibility complex (MHC) molecules at the cell surface, for recognition by the antigen-specific receptor of T cells. This processing appears to involve cleavage of protein antigens to smaller peptides. Only certain fragments of any protein can serve as T-cell epitopes and this is, at least in part, determined by the requirement that peptides be able to bind the MHC molecules. Class I restricted antigens are derived from proteins, such as viral antigens, that are synthesized within the presenting cell. Many of these antigens are cytosolic proteins and recent evidence suggests that it is in the cytosol that these proteins are processed to produce either the antigenic peptides or processed intermediates. How and where these processed cytosolic antigens cross the membrane of the vacuolar system and bind to the extracellular domain of the class I molecule is not known but one obvious site for this process is the endoplasmic reticulum (ER), because this organelle is specialized to translocate proteins across the membrane from the cytosol into the secretory system. Based on this model, we reasoned that if we could pharmacologically block the movement of proteins out of the ER, endogenous antigen presentation would cease. An agent which causes such an effect is available--the fungal antibiotic Brefeldin A (BFA). Consistent with the above hypothesis, we report that BFA completely abolishes the ability of a cell to present endogenously synthesized antigens to class I restricted cytotoxic T cells.  相似文献   

14.
Sigal LJ  Crotty S  Andino R  Rock KL 《Nature》1999,398(6722):77-80
Cytotoxic T lymphocytes (CTLs) are thought to detect viral infections by monitoring the surface of all cells for the presence of viral peptides bound to major histocompatibility complex (MHC) class I molecules. In most cells, peptides presented by MHC class I molecules are derived exclusively from proteins synthesized by the antigen-bearing cells. Macrophages and dendritic cells also have an alternative MHC class I pathway that can present peptides derived from extracellular antigens; however, the physiological role of this process is unclear. Here we show that virally infected non-haematopoietic cells are unable to stimulate primary CTL-mediated immunity directly. Instead, bone-marrow-derived cells are required as antigen-presenting cells (APCs) to initiate anti-viral CTL responses. In these APCs, the alternative (exogenous) MHC class I pathway is the obligatory mechanism for the initiation of CTL responses to viruses that infect only non-haematopoietic cells.  相似文献   

15.
M H Whitnall  E Mezey  H Gainer 《Nature》1985,317(6034):248-250
Vasopressin (VP) potentiates the effect of corticotropin-releasing factor (CRF) on the secretion of adrenocorticotropic hormone (ACTH) from anterior pituitary cells in vitro, and both CRF and VP have been found in portal blood. These data support the hypothesis that VP acts synergistically with CRF to cause the secretion of ACTH in vivo but the origin of the CRF and VP, and the physiology of their release, have not been precisely defined. Parvocellular cell bodies in the paraventricular nucleus (PVN) which project to the external zone of the median eminence can be stained for both CRF and VP after adrenalectomy, and there is light microscopic immunocytochemical evidence that neurophysin (NP) may be located within some of the CRF-containing axons. Electron microscopic immunocytochemical studies have demonstrated the presence of CRF, VP and its 'carrier' protein, VP-associated neurophysin (NP-VP) in 100-nm neurosecretory vesicles (NSVs) in axons terminating near the portal capillary plexus in the external zone of the median eminence. If these peptides are extensively co-localized in the same NSVs in the median eminence, then coordinate secretion of CRF and VP in vivo is obligatory, at least in some physiological circumstances. We demonstrate in this report, using post-embedding electron microscopic immunocytochemistry on serial ultrathin sections, that CRF, VP and NP-VP are contained not only in the same axons and terminals, but in the same 100-nm NSVs in the median eminence of both normal and adrenalectomized rats. In addition, in the normal rat median eminence 44% of the CRF-positive axons and terminals stained strongly for VP and NP-VP, whereas in the adrenalectomized rat virtually all the CRF-positive structures in the median eminence showed strong staining for VP and NP-VP, indicating a transformation of one subpopulation of CRF-positive axons and terminals by adrenalectomy.  相似文献   

16.
Although numerous fundamental aspects of development have been uncovered through the study of individual genes and proteins, system-level models are still missing for most developmental processes. The first two cell divisions of Caenorhabditis elegans embryogenesis constitute an ideal test bed for a system-level approach. Early embryogenesis, including processes such as cell division and establishment of cellular polarity, is readily amenable to large-scale functional analysis. A first step toward a system-level understanding is to provide 'first-draft' models both of the molecular assemblies involved and of the functional connections between them. Here we show that such models can be derived from an integrated gene/protein network generated from three different types of functional relationship: protein interaction, expression profiling similarity and phenotypic profiling similarity, as estimated from detailed early embryonic RNA interference phenotypes systematically recorded for hundreds of early embryogenesis genes. The topology of the integrated network suggests that C. elegans early embryogenesis is achieved through coordination of a limited set of molecular machines. We assessed the overall predictive value of such molecular machine models by dynamic localization of ten previously uncharacterized proteins within the living embryo.  相似文献   

17.
J L Maryanski  J P Abastado  P Kourilsky 《Nature》1987,330(6149):660-662
The class I molecules of the major histocompatibility complex (H-2 in mouse, HLA in man) are membrane proteins composed of a polymorphic heavy chain associated with beta-2-microglobulin. Recent studies suggest that class I molecules present peptides derived from processed antigens to the receptor of cytolytic T cells. In particular, in the H-2d haplotype, synthetic HLA peptides can be recognized on Kd-bearing target cells by Kd-restricted cytolytic T cells specific for HLA. Here we analyse the specificity of presentation of two HLA peptides by a set of chimaeric Kd/Dd molecules to four different cytolytic T-cell clones. We identify two distinct regions within the second external (alpha 2) domain of Kd that contribute to its specificity as a restriction element. Our results indicate that the binding of an immunogenic peptide by a class I molecule is not always sufficient for its recognition by the T-cell antigen receptor. This suggests that the major histocompatibility complex restriction element either interacts with the T-cell antigen receptor or induces the recognized conformation of the peptide.  相似文献   

18.
19.
D G?rlich  E Hartmann  S Prehn  T A Rapoport 《Nature》1992,357(6373):47-52
To identify components of the mammalian endoplasmic reticulum involved in the translocation of secretory proteins, crosslinking and reconstitution methods were combined. A multispanning abundant membrane glycoprotein was found which is in proximity to nascent chains early in translocation. In reconstituted proteoliposomes, this protein is stimulatory or required for the translocation of secretory proteins.  相似文献   

20.
Induction of cytotoxic T-cell immunity requires the phagocytosis of pathogens, virus-infected or dead tumour cells by dendritic cells. Peptides derived from phagocytosed antigens are then presented to CD8+ T lymphocytes on major histocompatibility complex (MHC) class I molecules, a process called "cross-presentation". After phagocytosis, antigens are exported into the cytosol and degraded by the proteasome. The resulting peptides are thought to be translocated into the lumen of the endoplasmic reticulum (ER) by specific transporters associated with antigen presentation (TAP), and loaded onto MHC class I molecules by a complex "loading machinery" (which includes tapasin, calreticulin and Erp57). Here we show that soon after or during formation, phagosomes fuse with the ER. After antigen export to the cytosol and degradation by the proteasome, peptides are translocated by TAP into the lumen of the same phagosomes, before loading on phagosomal MHC class I molecules. Therefore, cross-presentation in dendritic cells occurs in a specialized, self-sufficient, ER-phagosome mix compartment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号