共查询到17条相似文献,搜索用时 93 毫秒
1.
运动视目标检测是视频信息处理的重要研究课题之一.本文提出了一种基于高斯混合模型邻域信息融合的海面运动目标检测算法.该算法融合了背景差分和背景邻域信息差分,充分利用同一幅图像的像素邻域信息得到运动目标的种子点,认为高斯背景差分图像中包含种子点的连通区域为真实前景目标.实验表明,该方法可以避免背景模型在构建或更新阶段对场景的表征不足或错误而造成的误检,对强光下的海杂波也有良好的抑制作用,且对不同的气候环境有较好的鲁棒性. 相似文献
2.
基于自适应形态学Top-Hat滤波器的红外弱小目标检测方法 总被引:13,自引:0,他引:13
针对红外序列图像中运动弱小目标的检测问题,提出了一种基于自适应形态学Top-Hat算子和改进的自适应门限的弱小目标检测方法,其中形态学滤波嚣的结构元素采用两层前馈神经网络通过大量样本训练优化.将Top-Hat运算作为一个整体当作一层,输出层节点定义为作Top-Hat运算后图像矩阵的最大值,并针对所检测的大多数弱小点目标采用自适应门限进行分割,同时对SNR〉4左右的点目标用固定门限进行分割.实验结果表明,该方法对SNR较低的复杂图像具有良好的滤波效果. 相似文献
3.
针对红外小目标占用像素较少、背景相似性强、网络容易受到背景杂波信息干扰的问题,提出了一种基于注意力机制的红外小目标检测方法。利用注意力机制模块抑制背景杂波,增强小目标特征,并使用红外小目标检测模块实现检测任务;为了增强网络鲁棒性,通过高斯噪声与原图通道堆叠输入的数据增强方式提升网络抗杂波干扰的能力。实验表明,提出的方法在MDvsFA数据集中的性能超过了目前最新的对比算法。 相似文献
4.
5.
基于卡尔曼滤波器的背景抑制及小目标检测 总被引:10,自引:1,他引:10
提出了一种采用卡尔曼滤波器作为杂波背景预测器的小目标检测方法,相比较于传统的梯度下降算法,该方法充分利用了假设的杂波图像模型,并且算法中也没有影响检测性能的步长参数,因而具有更好的检测性能,实验表明,该方法能有效地抑制杂波,并同时增强小目标的信号。 相似文献
6.
《华中科技大学学报(自然科学版)》2015,(Z1)
提出了一种基于视觉注意机制的分层阈值化红外小目标检测算法.在采用形态学处理和Gamma校正对图像进行预处理的基础上,通过分层阈值化和连通域分析提取感兴趣区域(ROI),利用高斯滤波提高ROI的信杂比并确定候选目标,最后通过移动式管道滤波剔除伪目标,实现运动小目标的准确定位.实验表明该算法能有效地检测出小目标,且对于低信噪比的图片具有良好的适应性. 相似文献
7.
研究了天空背景下红外运动小目标的检测与识别.对序列红外图像进行增强处理,通过模板滤波去除弱噪声;运用分割算法和聚类分析把目标和强噪声从背景中分离出来,根据所定义的一种距离,运用动态规划的方法找出目标,并得出目标的运动轨迹;给出整套处理方法的实验结果和分析. 相似文献
8.
基于非线性局部滤波的红外小目标检测方法 总被引:1,自引:0,他引:1
为提高复杂环境下红外小目标的检测效率,将图像分为平坦区域、边缘区域和小目标区域三种区域,并针对三种成分的特点,提出基于拉普拉斯金字塔的非线性局部滤波检测方法。首先将图像进行高斯金字塔分解,将高斯低通金字塔与原图像尺寸匹配后,相减并进行阈值操作,抑制平坦区域;其次将标记像素灰度值与其周围环域均值的最小差作为指标,滤除边界区域;最后将非线性局部滤波结果生成相应的拉普拉斯金字塔各层系数,重构得到高对比度的检测图像,利用邻域特点剔除孤立噪声点并通过简单阈值标记红外小目标。实验结果表明:与现有其他算法相比,该检测算法能够对复杂背景有效抑制,检测速度快。 相似文献
9.
基于动态规划的红外小目标检测与识别 总被引:7,自引:0,他引:7
研究了天空背景下红外运动小目标的检测与识别,对序列红外图像进行增强处理,通过模板滤波去除弱噪声;运用分割算法和聚类分析把目标和强噪声从背景中分离出来。根据所定义的一种距离运用动态规划的方法找出目标,并得出目标的运动轨迹,给出整套处理方法的实验结果和分析。 相似文献
10.
提出了一种基于多尺度背景纹理分析的目标检测方法.通过小波多尺度分解来提取背景纹理的能量特征,并计算这些特征向量与中心向量之间的距离,目标检测在所得的距离像上完成.利用红外小目标的特性,根据距离像统计直方图来实现门限的自适应选取.实验验证了该方法的有效性 相似文献
11.
根据红外序列图像中运动目标具有连续性和一致性,本文提出了帧差法和边缘检测相结合的检测方法。首先采用连续帧间差分法处理图像得到运动区域,然后对当前帧进行canny边缘检测得到边缘信息,两者检测结果相与得到运动目标边缘;最后进行形态学运算得到精确的目标边缘。仿真结果表明,该方法克服了帧差法和边缘检测的不足,对复杂背景下的运动目标能够进行准确检测。 相似文献
12.
《华中科技大学学报(自然科学版)》2017,(10):25-30
提出一种自适应参数目标图像恢复算法,实现对红外小目标的检测.首先,提取红外图像的稀疏特征,同时计算图像的复杂度,并设计一种融合机制生成自适应加权参数;然后,将原始图像重组为具有低秩稀疏特性的运算矩阵,采用上述的自适应参数非精确拉格朗日乘子法求解鲁棒主成分分析(RPCA)最优化问题还原出低秩矩阵(背景图像)和稀疏矩阵(目标图像);最后,对目标图像进行阈值分割并标定目标.实验结果显示:该算法能有效检测出小目标,同时具有较低的误检率. 相似文献
13.
《华中科技大学学报(自然科学版)》2015,(Z1)
提出一种新的基于最小截平方(LTS)的杂波背景估计方法,并将其运用于红外小目标检测.最小截平方方法可以识别图像中的多个奇异点,比如噪声点和目标区域,剔除这些奇异点之后就可以把杂波背景无偏地估计出来,然后通过差分就可以得到包含目标的前景图像,进而从前景图中分割出小目标.与基于最小均方(LMS)的算法进行性能比较,结果表明:该方法可以获得更好的背景估计,并且对于复杂背景中的小目标检测也是有效的. 相似文献
14.
《华中科技大学学报(自然科学版)》2015,(Z1)
提出了一种基于视觉注意机制的红外小目标检测算法.通过形态学Top-hat算子对图像背景进行抑制,并根据目标与周围背景的对比度不同生成显著图后分割出目标感兴趣区,在感兴趣区域内对每帧图片在尺度空间采用Dog算子处理提高图像信杂比,获得具有较大信杂比的点.为避免目标在帧中消失,采用PID算法跟踪目标点,在可疑目标点周围小区域内采用视网膜皮层理论(Retinex)算法对图像局部区域增强再重新分割出目标.实验证明:该算法能有效对红外小目标进行检测,算法在不同背景的图像检测性能都趋于稳定,当目标融于背景时,能很好地将红外目标检测出来. 相似文献
15.
《华中科技大学学报(自然科学版)》2017,(10):31-37
提出一种基于加权核范数最小化的红外弱小目标检测方法.该方法将原始红外图像转化为新的红外块图像模式,在红外块图像上,以鲁棒主成分分析(RPCA)为基础,将图像数据矩阵分解为一个低秩矩阵和一个稀疏矩阵;针对RPCA模型对复杂背景描述能力弱的不足,引入了加权核范数来更好地描述背景的低秩特性,并给出了相应的优化求解算法;同时,给出了一种自适应阈值分割方法,准确地从稀疏目标图像中提取出弱小目标.基于天空、海洋、山地、沙漠4种不同场景进行红外弱小目标检测,并比较了该算法和已有算法的性能,结果表明:该算法能有效地降低复杂背景边缘产生的虚警,提高目标检测准确率. 相似文献
16.
17.
针对传统近邻保持嵌入算法(NPE)侧重保持样本的局部结构,而没有考虑样本类别信息的不足,提出判别局部近邻保持嵌入算法DLNPE.该算法利用样本点的局部结构构造新定义下的类内类间散布矩阵,并以此作为判别信息引入目标函数.在6个真实数据上进行实验,证明了所提算法的有效性. 相似文献