首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
湿法制备纳米二氧化锰及其电化学性能的研究   总被引:4,自引:1,他引:4  
分别用氧化法、还原法和氧化还原法在溶液中反应制备了MnO2粉末.用X射线衍射(XRD)、扫描电子显微镜(SEM)、循环伏安、交流阻抗、恒电流充放电等测试方法对3种样品结构、形貌和电化学性能进行分析比较.研究表明:三样品均为无定型MnO2,形貌呈团聚的球形,其中用氧化法制备的MnO2具有良好的电容性能和放电容量.  相似文献   

2.
以泡沫镍(NF)为基底,采用恒电位沉积法制备了MnO2电极材料,以聚乙烯醇PVA-Na2SO4为凝胶聚合物电解质组装了二电极体系,并以H2O-Na2SO4水系体系为对比进行了电化学性能研究.采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X-射线衍射(XRD)对电极材料的形貌和结构进行表征,用循环伏安法(CV)...  相似文献   

3.
介绍了纳米MnO2用作超级电容器电极材料的优势,从MnO2的制备、导电剂、电解质溶液和向MnO2晶格中掺入其他元素四个方面综述了目前纳米MnO2超级电容器的研究现状,并对未来的研究进行了展望。纳米MnO2电容器兼具双电层电容和氧化还原电容两种电荷储存机制,是一种很有前途的超级电容器电极替代材料。  相似文献   

4.
将碳纸与氧化还原反应法制备的纳米MnO_2通过液相沉积法形成新的复合电极材料,采用循环伏安和交流阻抗测试技术对复合电极材料进行电化学分析,研究结果表明:碳纸/纳米MnO_2复合电极材料呈花瓣状开放结构,有利于提高复合电极的比表面积;碳纸基体沉积时间为1 h时,复合电极的电化学性能最稳定;但随着扫描速率的增加,复合电极的比电容呈下降趋势,且沉积时间越长,复合电极电容性的稳定也越差。  相似文献   

5.
以KMnO4/乙二醇为原料,在水热条件下制备了长度可控,介于1~3μm,具有较大比表面积的MnO2纳米线。并采用XRD、FE-SEM、BET等检测手段对其进行表征。结果表明所制备的β-MnO2为纯相并具有良好的结晶度,合理控制反应时间可获得不同长度的MnO2纳米线。电化学测试表明,在0~1.0 V的电位区间内,纳米MnO2电极材料具有良好的可逆性和循环寿命。  相似文献   

6.
以KMnO4、NaOH和MnCl2为原料,在室温下采用液相氧化还原法制备了层状二氧化锰电极材料.分别采用X-射线衍射、扫描电子显微镜和N2吸附-脱附等方法对材料试样的晶型结构、表观形貌和比表面积等物理性能进行了表征; 采用循环伏安、恒流充放电和交流阻抗等电化学方法研究了材料试样的电化学性能.研究结果表明:所制备的层状二氧化锰为纳米材料,比表面积为89 m·g,在0.5 mol·LLi2SO4水系电解液中比电容为96.7 F·g,等效串联电阻为1 Ω,漏电流为0.24 mA,800次循环前后具有良好的循环稳定可逆性.  相似文献   

7.
用固相合成法制备Ag2O作为超级电容器材料,通过循环伏安与恒流充放电等测试手段对Ag2O电极及与作为负极的活性炭电极组成的电容进行分析.结果表明,在7mol·L-1KOH电解液中,Ag2O电极在0.15~0.35V(相对于Hg/HgO)的电压范围内表现出了法拉第电容特性.在不同电流密度下,电极比容量达427.3~554.9F·g-1,Ag2O/活性炭单体电容器比电容为42.5~61.65F·g-1.同时还对正极中Ag2O的含量及导电剂对Ag2O/活性炭单体电容器性能的影响进行了研究.  相似文献   

8.
在0.1 mol/L MnSO4水溶液中,采用恒电位电沉积法在ITO上制备了具有纳米结构的超级电容器活性电极材料MnO2。对制备产物进行了SEM、XRD和TG分析,用循环伏安法和恒电流充放电法研究了它的电化学性质。结果表明:在0.5 mol/L Na2SO4溶液中,该MnO2电极材料表现出良好的电容性能,当电流密度分别为1 A/g、2 A/g和3 A/g时,比电容分别为266 F/g、202 F/g和186 F/g。该纳米材料是一种潜在的电化学电容器电极材料。  相似文献   

9.
采用机械球磨法将竹炭和MnO2按不同比例复合,得到一系列不同配比的MnO2/竹炭电容器电极复合材料,对其进行扫描电子显微镜(SEM),X射线衍射(XRD)和热重分析(TG-DSC),并进行循环伏安和电化学充放电测试。结果发现,当MnO2在复合材料中的质量分数为1%时,电极比容量可以达到338 F/g,100次循环后维持在260 F/g,显示很好的电化学性能。  相似文献   

10.
为了弥补干电池材料电解MnO2(简称EMD)的某些性能上的不足,以期用化学MnO2(简称CMD)替代。在一定条件下,以氯酸钾氧化Mn^2+沉积法制化学MnO2,对其进行MnO2含量、肼脂数、磁化率、放电性能以及红外与差热等分析。结果表明,制得的CMD电化活性较高,有望替代电解MnO2作为干电池的阴极活性材料。  相似文献   

11.
麦穗状MnO_2的制备及其超电容特性   总被引:1,自引:1,他引:0  
超声条件下,利用KMnO4为氧化剂来氧化聚乙二醇-20000(PEG-20000)来制备超级电容器电极材料MnO2.XRD测试表明,合成的MnO2为α-MnO2和γ-MnO2的混合相.TEM测试表明,由于PEG-20000的软模板作用,所制备MnO2呈现出由许多纳米粒子组成的的麦穗状结构.电化学测试表明,麦穗状MnO2在1MK2SO4水溶液中具有良好的超电容特性,其比电容可达到310F.g-1,经过1000次循环后,电极容量仍保持在92%以上.  相似文献   

12.
通过原位复合方法合成碳包覆MnO/石墨烯(C@MnO/GN)复合材料并探究其作为锂离子电池负极材料的电化学性能.扫描电子显微镜(SEM)以及透射电子显微镜(TEM)表征结果表明,MnO纳米颗粒(直径约为30~50nm)均匀分散在石墨烯片层上,且颗粒外面包裹一层厚度约为5nm的碳层.电化学测试结果表明该材料作为锂离子电池负极具有优异的倍率和循环性能.0.2和0.5A/g电流密度下,比容量分别为800和700mAh/g;10A/g电流密度下比容量仍能保持在372mAh/g;当电流密度调回0.5A/g时,其比容量仍能恢复到730mAh/g.该材料也表现出优异的循环性能,在5和10A/g电流密度下依次循环100圈,容量保持率几乎100%.  相似文献   

13.
以碳球为模板,高锰酸钾为锰源,成功地制备了粒径较为均一的二氧化锰球壳,通过透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线粉末衍射(XRD)等手段对合成产品进行了表征,并考察了不同合成条件对空心球的影响。结果表明,合成的二氧化锰空心球粒径均一,壁厚可调。  相似文献   

14.
以乙酸锰和过硫酸铵为原料,通过水热合成法制备MnO2,再通过超声法制备MnO2/CNTs复合物.运用X射线衍射、傅里叶变换红外光谱、扫描电子显微镜对产物进行表征,并运用循环伏安、交流阻抗和恒电流充放电测试MnO2/CNTs复合物作为AZIBs正极材料的电化学性能.结果表明:在反应温度140℃,反应时间22 h的条件下,制得的MnO2产物为β-MnO2纳米线;将其与CNTs复合后,β-MnO2的化学结构没有发生改变;在0.1C倍率下循环20次,β-MnO2/CNTs电极在1 mol/L ZnSO4+0.5 mol/L MnSO4水溶液中的首次放电比容量为140 mAh/g,较β-MnO2/CNTs电极在1 mol/L ZnSO4水溶液中的首次放电比容量(45 mAh/g)提高了2倍,较β-MnO2电极在1 mol/L ZnSO<...  相似文献   

15.
以KMnO4、H2O2和(NH4)6Mo7O24.4H2O为原料,制备了MnO2-MoO3前驱物,并将其用氨水溶解,得到非晶MnO2。用XRD、TEM及EDAX进行了表征,样品为非晶MnO2。用电极循环伏安研究其电容性能:在1 mol.L-1Na2SO4溶液中,电位窗口为-0.2~0.8 V(vs SEC)范围内,5 mV.s-1的扫描速度下,制备的非晶MnO2比电容为356.72 F.g-1,经过100次循环后,电容量仅下降了5.5%,具有良好的可逆循环性能。  相似文献   

16.
为了弥补干电池材料电解MnO2(简称EMD)的某些性能上的不足,以期用化学MnO2(简称CMD)替代.在一定条件下,以氯酸钾氧化Mn2+沉积法制化学MnO2,对其进行MnO2含量、肼脂数、磁化率、放电性能以及红外与差热等分析.结果表明,制得的CMD电化活性较高,有望替代电解MnO2作为干电池的阴极活性材料  相似文献   

17.
以MnSO4和(NH4)2S2O8为主要原料,Fe(NO3)3为添加剂,采用水热法制备了菜花状MnO2。运用XRD,SEM对制备的MnO2进行了形貌和结构分析。通过循环伏安、恒流充放电测试和交流阻抗研究了MnO2的电化学性能。结果表明,实验制备的MnO2为α型菜花状结构,其在6 mol/L的KOH电解液中及0~0.4 V的电位范围内表现出良好的超级电容性能,电流密度为100 mA/g时,其比容量达到176 F/g。  相似文献   

18.
基于赝电容的MnO2薄膜有可能替代RuO2而成为超级电容器的电极材料.以金属钛片为基体,在Mn(CH3COO)2溶液中,采用电沉积法制备了以钛为基体的MnO2电极(MnO2/Ti),探索了不同沉积电位、扫描速度、电解液种类以及电解液浓度对MnO2/Ti电极电化学电容的影响.结果表明,沉积电位为0.5 V的MnO2/Ti,在2 mol/L Na2SO4溶液中,扫描速度10 mV/s的条件下,比电容值是393.2 A/g.图7,表3,参14.  相似文献   

19.
采用化学共沉淀法制备了超级电容器电极材料MnO2.采用XRD对其结构进行表征,并用循环伏安、交流阻抗、恒流充放电等测试手段研究了材料在1mol/L Li2SO4电解液中的电容性能.结果表明,MnO:电极在1mol/L Li2SO4电解液中具有优良的电容性能,以3mA/cm^2电流密度恒流充放电时,单电极比容量可达239.9F/g.经1000次恒流充放电循环后,电极比容量下降了11.7%.Nyquist曲线显示电极的电荷转移电阻较小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号