共查询到16条相似文献,搜索用时 46 毫秒
1.
针对现有人体步态身份识别算法单一、准确率较低的问题,提出了一种基于多尺度熵和动态时间规整(DTW,dynamic time warping)的人体步态身份识别方法。采用自制的APP软件在较低采样率下采集人体步行加速度数据,实验中共采集50名志愿者的正常行走加速度数据,使用多尺度熵算法进行数据处理,得到在各个尺度下的熵值,最后采用DTW算法对多尺度熵值进行特征匹配,得到的相对错误率(EER,equal error rate)为13.7%,仿真结果表明基于多尺度熵和DTW算法相结合的方法较好提高了身份识别的准确率,为人体步态身份识别提供了一个新的思路。 相似文献
2.
现有的步态识别方法对行人轮廓匹配的鲁棒性差,导致识别率不高.文章提出了基于Hausdorff距离的行人步态自动识别方法.首先提取了行人二值轮廓序列;然后采用轮廓参考点分布直方图间的距离、参考点集之间Hausdorff距离度量轮廓形状问的匹配度;继而通过步态的周期性分析选取关键姿态,计算出的关键姿态轮廓集间Hausdorff离结合窗口搜索策略实现了步态的分类和识别.分别在小型CASIA室外步态数据库和大型Soton室内库上进行了实验,提出算法的正确识别率分别可达到91.25%和88.16%.与相关文献的比较分析表明算法是有效的. 相似文献
3.
4.
基于步态的身份识别是生物识别领域的新兴问题,与传统生物识别技术相比,步态识别技术具有远距离识别性、非侵犯性、难以伪装和隐藏以及易于采集等优点,引起了国内外学者的注意。本文首先介绍了几种传统的生物识别技术,然后重点介绍了基于步态的身份识别技术的理论基础、算法流程、特征提取方法以及面临的机遇与挑战等。 相似文献
5.
6.
提出一种融合步态运动中的人体形状静态特征和动态特征的步态识别算法:使用改进的Hu矩表达人体轮廓特征,用于描述步态序列的静态特征;依据人体解剖学的知识定位下肢关节点,并提取两脚间的步幅,用于描述步态序列的动态特征;最后,将这两种特征进行组合处理。实验结果表明本文的算法具有不错的识别效能。 相似文献
7.
8.
步态识别作为一种行为特征识别技术,相对于人脸识别具有图像分辨率要求低、可远距离识别、可夜间识别等优点,在视频侦查领域有广阔的应用前景。本文提出一种基于监控视频中人体轮廓关键点与质心之间位置关系特征表示,利用BP神经网络进行分类的步态识别方法。基于CASIA Dataset B进行实验,实验结果验证了所选步态特征的可行性,实现了较高的步态识别效果。 相似文献
9.
10.
根据步态识别人身份的研究中,由于二维步态特征无法完全表示人体特有的动态步伐特征,导致识别受限。提出基于三维动态步态的身份识别方法,以连续步态图像帧为单位,通过立体视觉技术从二维图对不同采样时刻的运动人体三维步态轮廓信息进行提取,提取人体步态三维轮廓后,对其进行无关区域分割,获取和人体行走相关的步态特征。通过构建步态特征变换的几何模型,给出动态三维步态特征的转换过程,依据欧氏距离度量,根据结果实现身份识别。仿真实验结果表明,所提方法具有很高的识别精度和识别效率,性能较静态方法有较大的改善。 相似文献
11.
基于支持向量机的步态识别新方法 总被引:4,自引:0,他引:4
为了能更好地提取步态识别参量,克服目前常用步态识别算法的不足,提出了基于频域特征提取与支持向量机(SVM)识别的新方法.首先提取下肢关节点的两维空间运动数据并进行离散傅里叶变换,然后在频域进行窗口滤波,提取中间频段的幅值和相位,以此作为步态特征识别量输入至SVM进行分类识别.使用中国科学院自动化研究所的步态数据库,分别以SVM和人工神经网络(ANN)进行识别,其正确识别率分别为84%-93%和77%-88%,表明本文的新算法具有更好的识别性能. 相似文献
12.
以隐马尔可夫模型和动态纹理模型为代表的动态贝叶斯网是描述步态序列的重要方法,但都存在一些不足之处.提出了一种新的动态贝叶斯网——分层时序模型,该方法采用分段线性逼近非线性和用各段的动态纹理模型作为隐状态,将隐马尔可夫模型和动态纹理模型做了结合,充分发挥了其优势.该方法在CMU Mobo步态数据库和CASIA步态数据库B上做了评估,结果充分显示了分层时序模型的高性能. 相似文献
13.
真实监控环境下,行人前视步态比侧视步态更常见.现有步态识别方法主要针对侧视步态而非前视步态.为此,文中根据行人步态统计特征,提出了一种基于自动视角转换的前视步态识别方法.该方法通过计算行人步态能量图、行走迹线和步态视角,提取经视角转换后同一视角下的步态特征并进行比对识别.实验结果表明,在真实监控环境且单目监控摄像机参数未知的情况下,该方法对前视步态的正确识别率达81%,每秒可识别21帧,具有良好的识别效果. 相似文献
14.
基于特征融合的步态识别研究 总被引:1,自引:0,他引:1
提取了膝关节的速度距和路径距,膝关节到脚踝关节的距离作为步态特征,这些特征分别描述了步态的动态信息和静态信息.将这些特征融合得到了较全面的步态信息,利用融合特征进行步态识别,提高了步态的识别率. 相似文献
15.
红外步态图像具有可见度和对比度低的特点,易造成预处理后人体目标分割残缺不全,从而影响步态识别的性能。针对此问题,提出一种基于积极性区域的红外步态识别方法。首先通过将平均步态图像(AGI)划分成头、手臂、躯干、大腿、前腿、后腿和脚等7个区域,然后使用基于Gabor的区域协方差矩阵方法提取每个区域的特征,识别时使用其中6个处理效果相对完好的区域信息,从而剔除了残缺区域对识别结果的影响。该方法在CASIA的红外夜间步态库上进行了测试,取得了较好的识别效果。最后进一步分析了人体各个区域对识别的影响和作用,并提出了积极性区域的概念,用于红外步态识别。实验结果和分析结果表明,本文方法鲁棒性好且有效。 相似文献
16.
柴本成 《浙江万里学院学报》2010,23(2):91-95
步态识别是一种新兴的生物特征识别技术,具有远距离识别、非侵犯性、难于隐藏等优势。文章针对人体运动的特点,将步态看成是钟摆运动和平移运动的复合,提出了一种基于移动钟摆的步态识别方法。实验证明,该方法简单有效,并在CASIA数据集上取得90%以上的识别率。 相似文献