共查询到19条相似文献,搜索用时 93 毫秒
1.
微分进化算法的研究综述 总被引:11,自引:1,他引:10
微分进化(DE)是比较新的基于群体的随机优化方法.它具有简单、快速、鲁棒性好等特点,已经得到广泛关注.不同于其它进化算法,它的变异算子是由种群中任意选取的多对向量的差值得到的.微分进化主要用于实参数优化问题,在非线性和不可微的连续空间问题上优于其它进化方法.近些年,微分进化的应用领域也是不断扩大.研究目的是总结微分进化的研究进展和应用领域,并对它的进一步研究进行展望. 相似文献
2.
针对进化算法收敛速度缓慢、容易陷早熟的问题,提出了约束多目标优化问题的一种新的快速进化算法. 设计了能够从可行解空间和不可行解空间同时搜索的交叉算子,将约束条件和目标结合在一起,引入一种新的偏序关系用于比较个体之间的优劣,提出一种新的Niche值计算方法作为维持种群均匀性的主要动力,并采用已搜索解集避免了算法的重复搜索. 在此基础上, 设计了具有全局搜索能力的进化算法, 并证明了算法的收敛性. 仿真结果表明,与同类进化算法相比, 该算法能够快速收敛到Pareto前沿,并能很好地维持种群的多样性. 相似文献
3.
多Agent联盟生成是多Agent系统的关键问题之一, 主要研究如何在多Agent系统中动态生成面向任务的最优联盟. 为使Agent能稳定的组织起来完成单Agent不能完成的任务并在成本、资源、利益等方面达到一个良好的平衡性能并达到全局最优, 提出了联盟多目标综合评价模型, 并将量子进化多目标算法应用于多目标多任务Agent联盟问题, 运用编码的映射, 将资源组合和任务分配合并为一个过程, 降低了问题的复杂性. 对比实验结果表明该算法求得的解的质量高, 平衡性好, 能有效避免了联盟死锁和资源浪费. 相似文献
4.
约束多目标优化问题的进化算法及其收敛性 总被引:4,自引:0,他引:4
提出了带约束多目标优化问题的一种新解法。首先定义了个体的序值和个体的约束度,利用这两个定义给出了一种新的适应度函数和开关选择算子,从而对种群中的个体进行评估或排序时无需特别关心个体是否可行,避免了罚函数选择参数的困难。用概率论有关理论证明了算法的收敛性。用标准的Benchmark函数进行了仿真实验,仿真结果表明,新算法对约束多目标优化问题的求解是有效的。 相似文献
5.
复杂多目标优化问题通常有大量的Pareto有效解,并且存在部分Pareto有效解容易求出,而部分Pareto有效解很难得到的情况。已有的多目标进化算法在设计进化算子时都没有考虑Pareto有效解的求解难易程度,都是使用固定的杂交变异概率,因而在求解复杂多目标优化问题时效率不高。用带权重的极大、极小策略,通过专门设计的权重得到一组适应值函数,同时进一步构造了随进化代数变化的杂交、变异概率,其大小根据求解有效解的难易程度自动调节,提出的多目标进化算法的效率大大提高,并能求出有效界面上相对均匀分布的有效解。数值仿真表明了本算法非常有效。 相似文献
6.
基于分布式协商进化算法的多Agent目标冲突消解 总被引:1,自引:0,他引:1
针对多Agent系统研究中的目标冲突消解问题,建立了在多个Agent的局部目标和系统全局目标间进行协调优化的多目标优化模型.在多Agent分布式规划的框架下,提出了一种基于遗传算法(genetic algorithm,GA)的分布式协商进化算法,用于求解多目标规划模型.针对GA搜索中保持解的多样性、提高收敛速度等问题,对选择算子进行了设计.通过仿真实验,证明新的选择算子能有效提高解的质量.最后将该算法应用于部队机动协同路线规划的目标冲突消解问题,验证了其有效性. 相似文献
7.
8.
9.
有效的武器目标分配(weapon-target assignment,WTA)方法对减少作战损失,提高防御效果具有重要意义。针对防空资源分配问题建立合理的数学模型,以最大化目标毁伤效能和最小化雷达资源消耗为优化目标,同时考虑雷达通道数上限等多个约束,在基于分解的多目标进化算法(multi-objective evolutionary algorithm based on decomposition,MOEA/D)基础上进行改进,种群进化过程中自适应调整交叉与变异的概率以提高个体的质量,最终得到一组可供决策者使用的最优解集。实验结果表明:与其他多目标进化算法相比,该算法能得到适应度更高且分布性良好的结果,能够为防空导弹武器目标分配问题提供可行方案。 相似文献
10.
多目标微分对策理论及其在多目标攻击中的应用 总被引:3,自引:0,他引:3
本文首先提出了一种新颖的多机空战研究方法-多目标微分对策理论,并应用之对1:2多目标攻击空战进行了研究.仿真结果说明了该方法的完善性和合理性. 相似文献
11.
一种混合交叉策略的多目标演化算法及其性能分析 总被引:2,自引:0,他引:2
演化算法(EA)是求解多目标优化问题(MOP)重要而有效的方法,而应用演化策略、技巧是改善解性能的重要途径。作者叙述了多目标优化问题的有关概念,结合已有算法中的方法,设计了基于两种交叉操作相互结合的多目标演化算法(MOEADC),并且分析相关性能。该算法不仅具有较高的计算效率,而且具有较好的收敛性能,并且运用了有关方法维护了解集的分布性能。算例结果表明该算法的良好性能。 相似文献
12.
为了解决传统遗传算法易陷入局部最优解的问题,在多父体杂交算法和差分进化算法的基础上,提出了混合差分演化算法.该算法的核心在于,采用多父体杂交算子保证算法的遍历性,通过淘汰相同个体来保持群体的多样性,并以较小概率随机选取部分个体进行差分进化操作,从而充分利用最优个体的信息达到了加快收敛速度的目的.对复杂函数的寻优实验验证了混合差分演化算法的有效性. 相似文献
13.
提出一种基于差分演化的改进多目标粒子群优化算法来求解多目标优化问题。算法通过对Pareto最优解集的差分演化来增加Pareto解集的多样挫;通过循环拥挤距离采控制归档集中非劣解的分布.提高对种群空间的均匀采样;采用一种新的多目标适应值轮盘睹法选择粒子的全局最优位置,使其更逼近Pareto最优前沿;自适应惯性权重和加速度... 相似文献
14.
15.
用多目标进化算法求解二层规划双目标模型 总被引:4,自引:0,他引:4
传统单目标二层规划模型得到的最优解往往无法使上下级双方都满意.为此,通过在上层规划中同时考虑下级的目标函数,建立了原问题的上层为双目标规划的一个新模型.上下级可通过协商在该模型的Pareto-最优解集中找到双方满意解.对此模型设计了求解的多目标进化算法,用传统优化算法求解下层规划的单目标问题,而对上层的双目标规划问题则采用基于NSGA-Ⅱ的多目标进化算法求解.数值试验表明我们所提出的算法是有效的. 相似文献
16.
废弃物处理站选址问题及多目标演化算法求解 总被引:2,自引:0,他引:2
针对废弃物处理站选址问题,建立了一个总成本最小和负效用最小的双目标规划模型,从而确定建站的位置、处理容量以及分配给处理站的废弃物产生点.利用问题的启发式知识,设计遗传操作,提出了一种混合多目标演化算法.实例分析表明,混合多目标演化算法在求解质量上与约束法非常接近,而求解速度要远好于约束法. 相似文献
17.
18.