共查询到20条相似文献,搜索用时 15 毫秒
1.
首先介绍粒子滤波的基本理论,然后构建粒子滤波视频目标跟踪系统的状态模型和观测模型,进而根据状态模型和观测模型提出一种基于粒子滤波的视频目标跟踪算法,并通过实际的视频目标跟踪系统对算法进行实验分析,说明粒子滤波算法在视频目标跟踪中的优越性. 相似文献
2.
何佳 《科技情报开发与经济》2010,20(13):93-95
粒子滤波算法中通常采用先验转移概率代替重要性函数,由此重要性密度函数对后验函数的偏差将增大。将小波去噪应用到粒子滤波过程中,降低了偏差,提高了粒子算法的滤波精度,并将该算法应用到目标跟踪的过程中,通过仿真证实该方法能够提高粒子滤波精度。 相似文献
3.
基于颜色的粒子滤波非刚性目标实时跟踪算法 总被引:3,自引:0,他引:3
非刚性目标的跟踪与分析在计算机视觉领域引起了很多学者的关注.基于颜色的粒子滤波实时跟踪算法主要是利用视频图像的颜色直方图信息,综合考虑运动预测和帧间的相似性来确定目标的位置.提出一种改进粒子滤波算法并将其用于基于颜色的非刚性目标的实时跟踪问题中.仿真实验表明,本算法在保证跟踪准确度的同时,可以满足实时跟踪的要求. 相似文献
4.
随着当前计算机性能的不断提高,粒子滤波算法日益受到人们的关注,因为其在非线性、非高斯系统和状态滤波等方面具有独到的优势,也被广泛应用到运动目标跟踪研究当中。 相似文献
5.
杨永超 《安庆师范学院学报(自然科学版)》2016,22(3)
针对单一目标特征在复杂场景下难以实现有效的跟踪问题,提出了一种边缘纹理与颜色特征相融合的新方法。将Sobel算子与局部二值模式算子相结合,得到一种新的边缘纹理SLBP(Sobel Local Binary Pattern)特征提取方法,并与HSV(Hue,Saturation,Value)颜色特征融合应用于粒子滤波框架的视频目标跟踪。实验结果表明:本文提出的SLBP+HSV特征融合方法能够克服视频中光照变化、目标遮挡等复杂背景影响的问题,提高跟踪的精确度。 相似文献
6.
针对无线传感器网络环境下的机动目标跟踪问题,提出了一种描述目标机动加速度的目标状态空间模型,以此模型为基础开发出基于粒子滤波的单目标和多目标跟踪算法.基本思想是:在状态空间中通过寻找一组传播的随机样本来获得近似后验概率分布,并以样本均值代替积分运算,从而求得最小状态方差估计.仿真结果表明,所提算法可以较好地解决无线传感器网络环境下的机动目标跟踪问题,速度跟踪精度、机动加速度跟踪精度均较经典分布式粒子滤波算法分别提高20%、27%. 相似文献
7.
8.
雷达目标跟踪量测系统常受到闪烁噪声干扰,导致传统滤波算法的滤波性能急剧下降甚至发散。针对标准粒子滤波算法存在粒子退化的缺陷,重采样环节引入禁忌搜索思想,提出了禁忌搜索扩展卡尔曼粒子滤波算法,驱散局部最优的粒子集,使其向全局最优位置靠近,提高采样粒子的有效性。结合交互多模型(IMM),将算法与IMM-PF算法进行仿真比较,结果表明该算法对机动目标具有较优的跟踪性能。 相似文献
9.
针对复杂场景下目标跟踪算法存在的跟踪目标丢失漂移等问题,提出一种粒子滤波框架下基于卷积神经网络(convolutional neural network,CNN)的目标跟踪算法.该算法采用CNN提取跟踪目标的高层语义特征,并引入离线训练方式,提高训练效率以及特征提取的泛化能力;利用粒子滤波算法框架,实现目标运动状态的有效估计;同时采用长时与短时两种更新策略,并引入困难样本挖掘的在线训练方式,以适应目标外观变化与背景干扰等复杂情况.仿真实验结果表明本文算法能有效适应遮挡、光照、剧烈运动等场景.与多个当前的跟踪算法在公开测试样本下进行了结果比较和分析,验证了本算法在解决跟踪目标丢失漂移等问题上的有效性. 相似文献
10.
粒子滤波算法应用于目标跟踪时,存在样本贫化和计算量大的问题,提出了一种基于智能优化粒子滤波算法.利用粒子群算法良好的局部寻优和全局寻优能力对重采样之后的粒子集进行操作,使粒子可以智能地合作起来,减轻样本贫化.实验结果表明,该算法实时性强,提高目标状态的估计精度,缩短了计算时间,其滤波性能优于常规粒子滤波算法. 相似文献
11.
为实现运动目标精确跟踪,克服跟踪过程中目标的非线性运动以及由目标形变、遮挡和光照等因素带来的影响,本文提出了一种改进的颜色粒子滤波方法. 算法从提高目标模型描述能力入手,首先对直方图加权函数进行了改进,使模型对区域特征描述更加合理;然后针对颜色直方图特征对光照明敏感、易受环境干扰等缺点,将目标由颜色特征空间映射到对光照稳定、抗几何失真能力强的局部熵特征空间,构建了颜色局部熵观测模型;同时设计了目标模板的自适应更新策略,当目标受到严重干扰的时候动态调节粒子数目. 实验结果表明相比传统的颜色粒子滤波算法,本文算法具有更好的鲁棒性,能够在存在遮挡、光照变化、非线性运动等情况下实现稳定跟踪. 相似文献
12.
分布式粒子滤波算法在面向跟踪的无线传感器网络中的应用 总被引:1,自引:0,他引:1
无线传感器网络在目标跟踪应用中的优势主要体现在跟踪更精细可靠且及时隐蔽,但是由于传感器网络中没有中心控制机制,无线通信的带宽有限,这就要求采用合理的跟踪策略,高效的分布式信息处理算法.将"ad hoc跟踪群"的概念移植到面向跟踪的无线传感器网络中作为传感器的组织策略,并和适用范围较大的粒子滤波相结合实现跟踪任务.仿真实验证明,在不影响跟踪精度要求的情况下,此方案能够降低通信能量开销. 相似文献
13.
一种新的粒子滤波目标跟踪算法 总被引:3,自引:0,他引:3
为了进一步提高目标跟踪的性能,采用一种新的建议分布构造方法,即利用状态分割技术和平行扩展卡尔曼滤波技术构造建议分布.依据该方法构造的建议分布相对传统的方法提高了粒子滤波估计的准确性.同时,在新的跟踪算法框架中,将颜色模型和形状模型自适应地融合,并结合了一种新的模型更新方法.实验结果证明,该跟踪算法具有较强的适应性和有效性. 相似文献
14.
《四川理工学院学报(自然科学版)》2015,(5):37-43
近几十年来,随着传感器、无线通信、信息处理、计算机等相关技术的不断发展和创新,基于无线传感器网络的应用越来越广泛,对无线传感器网络中的目标跟踪算法进行研究也具有极大的现实意义。在研究滤波算法的基础上,针对粒子滤波算法中的粒子退化问题,考虑无迹粒子滤波中的重要性函数充分利用了当前观测值但是运行时间长的问题,提出一种在有效粒子数满足一定条件下进行无迹变换的方法,将先验分布和通过无迹卡尔曼方法得到的重要性函数相结合作为新的提议分布以减缓粒子的退化。对于粒子滤波中的样本贫化问题,提出一种改进的分类重采样方法,当粒子的多样性不足时,在大权值粒子上加一个以噪声方差控制的扰动并给予小权值粒子一定的被选概率,以此增加粒子的多样性,并以C++为仿真工具对所提方法进行了试验。结果表明,改进的粒子滤波算法在估计精度上优于标准粒子滤波和无迹粒子滤波,而且运行时间比无迹粒子滤波减小一半多。 相似文献
15.
粒子滤波在无线通信、目标跟踪等非线性、非高斯系统中具有广阔的发展前景,但计算量大、实时性差成为了其在实际中应用的瓶颈。降低粒子滤波算法的复杂度,提高运算速度,设计一种运算速度快、性能可靠、占用硬件资源少的粒子滤波算法器将具有重要的理论和现实意义。本文研究了一种基于Mean-Shift算法的粒子滤波器,这种多目标图象中的指定目标跟踪滤波器具有很好的跟踪效果。 相似文献
16.
量子遗传优化粒子滤波的WSN目标跟踪算法 总被引:1,自引:0,他引:1
在无线传感器网络(WSN)目标跟踪应用中,传统粒子滤波算法存在多样性退化问题。为提高WSN目标跟踪精度,提出一种基于量子遗传算法优化粒子滤波的WSN目标跟踪方法。量子遗传算法不仅增加粒子多样性,防止粒子退化现象出现,有效缩短了计算时间且改善粒子跟踪能力。测试结果表明,所提出算法很好地减轻了粒子退化对目标跟踪精度影响,提高了WSN目标跟踪精度和跟踪的实时性,跟踪结果令人满意。 相似文献
17.
视觉跟踪中的粒子滤波算法研究进展 总被引:1,自引:0,他引:1
详细讨论粒子滤波算法在视觉跟踪领域的研究现状,对应用粒子滤波算法解决单目标及多目标跟踪问题进行了详细的分析.在粒子滤波算法框架内,选择一个合适的建议分布构建基于粒子滤波算法的跟踪算法是文章关注的焦点.对视觉跟踪中的难点问题:遮挡、目标交互、场景光线变化等详细的分析了使用粒子滤波算法的解决方法.第三部分对当前粒子滤波算法在视觉跟踪应用中存在的问题进行了分析,最后给出了结论. 相似文献
18.
目标跟踪算法的目的是对目标进行跟踪,跟踪滤波算法的好坏直接决定了能否及时地跟踪上目标。在粒子滤波算法中,重采样是很重要的一步,很多介绍粒子滤波的文献都提到了在重采样前设置一个采样门限,以此来判断在粒子滤波算法中是否进行重采样。采用实际仿真的方法研究了采样门限取值对跟踪效果包括跟踪时间以及跟踪精度的影响,采用了最经典常用的跟踪模型进行了仿真研究。 相似文献
19.
王江涛 《吉林大学学报(理学版)》2015,53(5):999-1005
针对粒子滤波算法在复杂环境下粒子数量显著增加导致跟踪实时性下降的问题,提出一种将背景差分引入到粒子滤波算法中的新算法.利用背景差分对图像处理后得到检测结果,将分布在已被检测为前景像素点上的粒子定义为重要性粒子,增大了其权值.实验结果表明,该算法能使用较少的粒子实现较好的跟踪,提高了跟踪的实时性. 相似文献
20.
为了解决单一固定目标模型在复杂的场景中易产生跟踪漂移问题,提出一种基于DSPCA的自适应粒子滤波跟踪方法,通过稀疏主成分分解(DSPCA)在线获取互补图像集,同时将其按照新的相似度BRS进行自适应融合作为新目标模型。与经典的粒子滤波跟踪算法、视觉分解跟踪算法和多特征自适应融合跟踪算法,与有挑战性较高的场景视频相比,提出的算法在形态、运动快速及严重遮挡的运动场景中,都能鲁棒地跟踪到目标。 相似文献