首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
勘探区位于鄂尔多斯高原西部,属于高原侵蚀性丘陵地貌,地表复杂,地层倾角较陡,激发条件差,野外施工困难,采用野外静校正、地表一致性反褶积、自动剩余静校正等处理手段,查明了主采煤层的赋存状态,预测了煤厚变化情况,查明了区内落差5m以上的断层,解释了落差3~5m的断点原因。  相似文献   

2.
采空区的存在对煤矿区生产、人民财产安全和工程建设造成极大的安全隐患。有效地探测采空区成为解决上述问题的关键。该文从采空区地球物理特征入手,采用三维地震、高密度电法的综合物探方法对采空区进行探测。三维地震勘探技术可查明直径大于20m的陷落拄,控制采空区边界,平面位置误差不大于20m。高密度电法是剖面法和电测深法的集中,在原理上与普通电阻率法相同,是一种阵列勘探方法,不同点是该方法在观测中设置了高密度的观测点;它具有较高的分辨能力,且勘探效率高,结合钻孔资料能进行一、二维反演,圈定电阻率异常区,从而确定采空区范围及充水情况。  相似文献   

3.
就沁水盆地某矿的高分辨率三维地震数据中的巷道异常现象,运用频谱分解方法进行了精细解释。研究结果表明:利用该技术可以查明埋深大于460m、巷高2.6m的双层煤岩巷,异常特征反映明显,边界清晰,解释成果与实际掘进巷道资料吻合较好。  相似文献   

4.
赵杨 《安徽科技》2014,(3):47-47
正一、背景概述E3211工作面位于钱营孜煤矿东一采区西部,为该采区首采工作面。根据实测资料,工作面机巷长2207.7m,底板标高-235.728~-629.156m;风巷长2252.0m,底板标高-233.123~-647.533m,底板最大落差约414.41m,机巷最大倾角18°,两巷方位角206°;开切眼长280m。工作面内32煤层平均倾角约12°,煤层走向WE,倾向SN。工作面内煤厚在1.70~4.8m之间,平均煤厚3.14m,煤厚变异系数γ=20%,属于稳定煤层,煤层可采性指数K=1。采用综合机械化俯采方式回采。由于工作面落差较大,工作面供水系统是确保工作面正常回采最大问题。该矿  相似文献   

5.
在新疆伊犁盆地南部侏罗纪煤田煤炭资源勘查中,采用二维地震对阿尔玛勒煤炭勘查区进行勘探,通过数据处理及地质解释,大致查明了区内主要煤层底板起伏形态及煤层厚度变化趋势;搞清了勘查区构造形态,并对区内断层和断点进行了解释。取得了丰富和详实的煤田地质成果,从而进一步指导该区的煤炭勘查工作。  相似文献   

6.
采取改进PID控制方法,通过仿真验证机床滑台跟踪结果.采用直角坐标系建立机床滑台二维简图模型,设计机床滑台闭环控制流程,定义机床滑台位置传递控制函数.采用BP神经网络结构对PID控制器进行改进,给出机床滑台位置输出误差评价指标函数.采用MAT-LAB软件检验不同控制系统跟踪结果.结果表明:在无干扰状态下,采用传统PID控制系统,滑台位置跟踪误差最大值为0.05m,采用改进PID控制系统,滑台位置跟踪误差最大值为0.02m.两种控制系统跟踪误差相差不大,都能实现滑台位置的精确定位.在有干扰状态下,采用传统PID控制系统,滑台位置跟踪误差较大,误差最大值为0.19m,而采用改进PID控制系统,滑台位置跟踪误差较小,误差最大值为0.02m.采用改进PID控制系统,能够实现机床滑台位置的精确定位,提高机床主轴对零件的加工精度.  相似文献   

7.
分析了数控机床几何误差的固有特性,提出一种使用较小范围测量仪器获得整个机床平面误差场信息的方法——接力测量法.该方法以距离机床坐标原点较近的点(该点的误差直接通过测量仪器获得)为基点,从而获得离机床坐标原点较远位置点的误差,依此类推,最终获得整个机床平面上位置点的误差信息.给出了接力测量的法则,对平面误差场中任意一点的误差,应以最少的接力次数获得,接力测量次数相同时,测量路径对测量结果影响不大.试验结果表明,在数控机床反向间隙补偿后,由接力测量产生的误差对测量结果影响很小,接力测量法具有较高的测量精度,且操作方便,能够用来进行平面误差场的标定.  相似文献   

8.
赵旭平 《科技资讯》2011,(14):112-112
研究医处于邯郸奥灰水文地质南单元的八特-四矿-李庄-王凤-滏阳河强迳流带北部的东侧,西北以F6断层与四矿相邻,断层落差大于100m,煤系地层与奥灰接触,奥灰水直接威胁煤层开采.因此研究本区矿井充水特征有特别重要的意义.  相似文献   

9.
干涉仪测量球面曲率半径的精度分析   总被引:2,自引:0,他引:2  
利用数字波面干涉仪对光学球面曲率半径进行直接测量和间接测量,分析了2种测量方法的误差来源及测量精度,给出了方法的适用范围和局限性.结果表明,基于光栅尺的直接测量方法的精度受限于齐焦位置与猫眼位置的判读精度,其测量不确定度在10~70μm的范围内,与f数相关并与球径仪的测量精度相当;利用平面干涉仪测量球面波矢高后间接计算曲率半径的方法适合f数大于1 000的长曲率半径的测量,其精度为0.8~0.3m,与干涉仪的标准平晶平面度和测试稳定性密切相关.通过提高标准平晶的平面度和控制测量环境,针对口径6mm、曲率半径9m的激光陀螺反射镜进行的曲率半径测量精度达到0.05m,与ZYGO NewView7 000 3D型表面轮廓仪的测试结果差异为0.03m.  相似文献   

10.
针对机床几何误差与零件误差映射关系建模方法并未考虑刀具在加工过程中各个点位的位置偏差与姿态偏差的问题,以三轴机床为研究对象,首先利用多体系统运动学理论,建立机床刀尖点误差与刀轴矢量误差模型。然后利用单基站激光跟踪仪多次测量的方法,结合误差分离算法,辨识得到了机床的21项几何误差项,并对18项与位置有关的误差项进行拟合,构建了完整的典型三轴机床工作空间误差场。最后以凸台宽度、平面度、孔轴线位置度等典型特征,结合加工轨迹,建立起机床几何误差与尺寸误差、形状误差和位置误差的映射关系,并进行了相应的实验验证。实验结果表明:凸台宽度误差与机床刀尖点在该处的几何误差有关,11个点位的凸台宽度误差测量值与计算值相差在5μm以内;"之"字型铣削平面度误差分析要先进行刀具轨迹离散化,然后将刀具圆周离散化,计算刀具圆周含有误差的点,通过点位筛选原则,选择真正属于加工表面的点,对这些点利用最小二乘法计算平面度,平面度误差计算值与测量值相差2μm以内;孔轴线位置度误差分析要考虑钻孔过程中不同位置处刀尖点误差与刀轴姿态误差,以二者为基础构建孔轴线方程,通过代入检测平面的高度以获取相应高度处圆心偏差,孔轴线位置度误差计算值与测量值相差5μm以内。  相似文献   

11.
为了探究急倾斜煤层开采形成的采空区对其上覆输气管道安全运行的影响,基于快速拉格朗日法对某煤层采空区进行数值模拟,探究了实际煤矿采空区的地质沉降和管道位移特征,研究了不同倾角、不同开采深度的急倾斜煤层对上覆输气管道变形的影响。结果表明:某煤矿区五个急倾斜煤层在开采100 m后,在煤层坡面上方形成最大深度1.54 m的塌陷,塌陷区内的土壤和岩石主要向煤层方向水平移动和垂直向下移动;靠近煤层采空区的管道,垂直方向位移大于水平方向位移,而远离煤层采空区管道,则水平位移较大;随着急倾斜煤层倾角减小和开采深度增大,管道向下的沉降量增大,并且发生最大沉降的位置逐渐向煤层方向靠近。  相似文献   

12.
以云南省南部江城地区为例,采用旋翼式无人机对其进行倾斜摄影测量,通过Smart 3DCapture系统进行像控点匹配、空三加密及三维实景建模,并利用模型的点位精度和平面精度定量评价三维模型的质量。实验分析表明:平面位置中误差为0.024 81 m,高程中误差为0.022 46 m,两方向中误差均小于10 cm,高程精度略高于平面精度。  相似文献   

13.
矿井地质构造是影响煤矿建设与生产的主要因素之一,为查明潘二井田13-1煤层的地质构造特征,以便对未采掘区的构造进行预测预报,以大量构造统计资料为依据,运用数理统计和趋势面分析的方法对采区的构造进行统计分析,研究潘二矿矿井构造特征.结果表明:潘二矿小断层走向以近EW向为主,倾向主要以NEE为主,且80%以上为正断层;不同区域、不同煤层之间断层发育存在较大差异,潘二矿矿区的构造样式是多期次构造运动的叠加.落差较大的断层均为逆断层,建议在开采生产过程中引以注意.  相似文献   

14.
文中介绍了一直立式大型驻波管测试设备。内净截面积600×600毫米,测试传声器最大移动范围8.8米,正常使用频率范围内空管驻波比在35分贝以上,极小值位置读数误差不大于8毫米。  相似文献   

15.
本文选用新安煤矿17#煤层111706采煤工作面作为本煤层顺层钻孔预抽瓦斯技术试验区,研究17#煤层合理的预抽瓦斯技术参数值.通过对该矿17#煤层111706工作面预抽瓦斯数据分析得出:预抽试验区采用交叉布孔法预抽量可提高40%,Φ94 mm大直径钻孔预抽量比Φ65 mm直径钻孔增加34%,以预抽率作为17#煤层预抽防突有效性指标是可行的.预抽率大于25%时,就可以达到消除煤与瓦斯突出危险.但只有预抽率达到30%以上,钻屑检验指标K1才不会超标.钻场内钻孔抽采瓦斯浓度大于巷道钻孔抽采瓦斯浓度可达1倍,其最小封孔深度应不小于5m.建议施工双向抽采钻孔来覆盖全工作面,掘进工作面钻孔深度控制在100 m范围内.  相似文献   

16.
本文选用新安煤矿17#煤层111706采煤工作面作为本煤层顺层钻孔预抽瓦斯技术试验区,研究17#煤层合理的预抽瓦斯技术参数值。通过对该矿17#煤层111706工作面预抽瓦斯数据分析得出:预抽试验区采用交叉布孔法预抽量可提高40%,Φ94 mm大直径钻孔预抽量比Φ65 mm直径钻孔增加34%,以预抽率作为17#煤层预抽防突有效性指标是可行的。预抽率大于25%时,就可以达到消除煤与瓦斯突出危险。但只有预抽率达到30%以上,钻屑检验指标K1才不会超标。钻场内钻孔抽采瓦斯浓度大于巷道钻孔抽采瓦斯浓度可达1倍,其最小封孔深度应不小于5 m.建议施工双向抽采钻孔来覆盖全工作面,掘进工作面钻孔深度控制在100 m范围内。  相似文献   

17.
煤田测井的重要任务是煤层定厚解释、提供可靠的煤层厚度及埋深成果。由于测量技术条件的改变、方法探测原理和纵向分辨率的不同,再加上人为因素的影响,不同方法测井曲线的煤层定厚解释必然存在一定误差,为衡量成果的可靠性,有必要限制误差范围。  相似文献   

18.
针对平煤集团十三矿煤层倾角变化大,回采巷道支护困难等问题,通过岩石力学参数测试分别模拟煤层埋深300m、500m、800m和倾角0°、25°、30°情况下区段工作面侧向压力分布规律和区段煤柱受力情况,并对12020区段运输平巷(下巷)实体煤侧的应力及围岩变形监测、。研究结果表明:随煤层倾角增大下区段运输巷与上区段回风巷两侧应力承非对称分布,采场顶板应力分布也是高度不均匀、不对称的,侧向水平应力峰值随煤层倾角增大而增大,且工作面后方增加幅大于工作面前方;峰值位置随煤层倾角增大而逐渐靠近煤壁。煤层倾角加大时,应力明显偏向下区段运输巷,使得下区段运输巷顶部出现明显应力集中,随着煤层倾角的增大,这种差异有扩大的趋势。数值分析结果和现场抽采参数分析结果基本吻合,对区段煤柱优化和巷道安全支护具有重要意义。  相似文献   

19.
利用已有钻孔煤层气资料通过相关关系拟合获得了研究区煤层底板标高与含气量间的预测模型.利用该模型及地震解释获得的煤层底板标高数据预测了研究区8号主采煤层含气量分布.经后期煤层气探井实测数据验证,其预测精度达到85%以上.预测结果分析表明,远离断层的井预测精度高,而靠近断层的井预测误差大,其误差值在-1.86~4.32 m3/t之间.认为研究区煤层含气性总体受煤层底板标高(构造)控制,但复杂的小规模断层对煤层气具有聚集和散失双重作用,构造发育和展布规律应该是研究区煤层气靶区优选的首要考虑指标.  相似文献   

20.
综放全厚开采20 m特厚中硬煤层数值模拟研究   总被引:2,自引:0,他引:2  
针对酸刺沟煤矿6-1号煤层的具体条件,基于矿山压力对顶煤的压裂作用,运用数值模拟方法系统研究了综放全厚开采20 m特厚中硬煤层的合理工作面长度和工艺参数。主要结论有:工作面前支承压力峰值随工作面推进距离增大而变化;工作面前支承压力峰值随工作面长度的增加而增大;顶煤破坏系数随工作面推进距离和工作面长度的增加而变化。考虑矿山压力对顶煤的压裂作用,20m特厚中硬煤层综放工作面的长度应大于300 m;建议综放全厚开采20 m特厚中硬煤层的底层工作面应采用4.5 m的大采高;支架合力作用点位置和支架阻力对顶煤压裂和支护系统的稳定性起着十分重要的作用;给出了合理的开采工艺参数及其匹配。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号