首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 349 毫秒
1.
Development of the vertebrate limb bud depends on reciprocal interactions between the zone of polarizing activity (ZPA) and the apical ectodermal ridge (AER). Sonic hedgehog (SHH) and fibroblast growth factors (FGFs) are key signalling molecules produced in the ZPA and AER, respectively. Experiments in chicks suggested that SHH expression in the ZPA is maintained by FGF4 expression in the AER, and vice versa, providing a molecular mechanism for coordinating the activities of these two signalling centres. This SHH/FGF4 feedback loop model is supported by genetic evidence showing that Fgf4 expression is not maintained in Shh-/- mouse limbs. We report here that Shh expression is maintained and limb formation is normal when Fgf4 is inactivated in mouse limbs, thus contradicting the model. We also found that maintenance of Fgf9 and Fgf17 expression is dependent on Shh, whereas Fgf8 expression is not. We discuss a model in which no individual Fgf expressed in the AER (AER-Fgf) is solely necessary to maintain Shh expression, but, instead, the combined activities of two or more AER-Fgfs function in a positive feedback loop with Shh to control limb development.  相似文献   

2.
The expression pattern and activity of fibroblast growth factor-8 (FGF8) in experimental assays indicate that it has important roles in limb development, but early embryonic lethality resulting from mutation of Fgf8 in the germ line of mice has prevented direct assessment of these roles. Here we report that conditional disruption of Fgf8 in the forelimb of developing mice bypasses embryonic lethality and reveals a requirement for Fgf8 in the formation of the stylopod, anterior zeugopod and autopod. Lack of Fgf8 in the apical ectodermal ridge (AER) alters expression of other Fgf genes, Shh and Bmp2.  相似文献   

3.
Early outgrowth of the vertebrate embryonic limb requires signalling by the apical ectodermal ridge (AER) to the progress zone (PZ), which in response proliferates and lays down the pattern of the presumptive limb in a proximal to distal progression. Signals from the PZ maintain the AER until the anlagen for the distal phalanges have been formed. The semidominant mouse mutant dactylaplasia (Dac) disrupts the maintenance of the AER, leading to truncation of distal structures of the developing footplate, or autopod. Adult Dac homozygotes thus lack hands and feet except for malformed single digits, whereas heterozygotes lack phalanges of the three middle digits. Dac resembles the human autosomal dominant split hand/foot malformation (SHFM) diseases. One of these, SHFM3, maps to chromosome 10q24 (Refs 6,7), which is syntenic to the Dac region on chromosome 19, and may disrupt the orthologue of Dac. We report here the positional cloning of Dac and show that it belongs to the F-box/WD40 gene family, which encodes adapters that target specific proteins for destruction by presenting them to the ubiquitination machinery. In conjuction with recent biochemical studies, this report demonstrates the importance of this gene family in vertebrate embryonic development.  相似文献   

4.
During limb outgrowth, signaling by bone morphogenetic proteins (BMPs) must be moderated to maintain the signaling loop between the zone of polarizing activity (ZPA) and the apical ectodermal ridge (AER). Gremlin, an extracellular Bmp antagonist, has been proposed to fulfill this function and therefore be important in limb patterning. We tested this model directly by mutating the mouse gene encoding gremlin (Cktsf1b1, herein called gremlin). In the mutant limb, the feedback loop between the ZPA and the AER is interrupted, resulting in abnormal skeletal pattern. We also show that the gremlin mutation is allelic to the limb deformity mutation (ld). Although Bmps and their antagonists have multiple roles in limb development, these experiments show that gremlin is the principal BMP antagonist required for early limb outgrowth and patterning.  相似文献   

5.
The tyrosine phosphatase Shp2 is recruited into tyrosine-kinase signalling pathways through binding of its two amino-terminal SH2 domains to specific phosphotyrosine motifs, concurrent with its re-localization and stimulation of phosphatase activity. Shp2 can potentiate signalling through the MAP-kinase pathway and is required during early mouse development for gastrulation. Chimaeric analysis can identify, by study of phenotypically normal embryos, tissues that tolerate mutant cells (and therefore do not require the mutated gene) or lack mutant cells (and presumably require the mutated gene during their developmental history). We therefore generated chimaeric mouse embryos to explore the cellular requirements for Shp2. This analysis revealed an obligatory role for Shp2 during outgrowth of the limb. Shp2 is specifically required in mesenchyme cells of the progress zone (PZ), directly beneath the distal ectoderm of the limb bud. Comparison of Ptpn11 (encoding Shp2)-mutant and Fgfr1 (encoding fibroblast growth factor receptor-1)-mutant chimaeric limbs indicated that in both cases mutant cells fail to contribute to the PZ of phenotypically normal chimaeras, leading to the hypothesis that a signal transduction pathway, initiated by Fgfr1 and acting through Shp2, is essential within PZ cells. Rather than integrating proliferative signals, Shp2 probably exerts its effects on limb development by influencing cell shape, movement or adhesion. Furthermore, the branchial arches, which also use Fgfs during bud outgrowth, similarly require Shp2. Thus, Shp2 regulates phosphotyrosine-signalling events during the complex ectodermal-mesenchymal interactions that regulate mammalian budding morphogenesis.  相似文献   

6.
Haploinsufficiency for human EYA1, a homologue of the Drosophila melanogaster gene eyes absent (eya), results in the dominantly inherited disorders branchio-oto-renal (BOR) syndrome and branchio-oto (BO) syndrome, which are characterized by craniofacial abnormalities and hearing loss with (BOR) or without (BO) kidney defects. To understand the developmental pathogenesis of organs affected in these syndromes, we inactivated the gene Eya1 in mice. Eya1 heterozygotes show renal abnormalities and a conductive hearing loss similar to BOR syndrome, whereas Eya1 homozygotes lack ears and kidneys due to defective inductive tissue interactions and apoptotic regression of the organ primordia. Inner ear development in Eya1 homozygotes arrests at the otic vesicle stage and all components of the inner ear and specific cranial sensory ganglia fail to form. In the kidney, Eya1 homozygosity results in an absence of ureteric bud outgrowth and a subsequent failure of metanephric induction. Gdnf expression, which is required to direct ureteric bud outgrowth via activation of the c-ret Rtk (refs 5, 6, 7, 8), is not detected in Eya1-/- metanephric mesenchyme. In Eya1-/- ear and kidney development, Six but not Pax expression is Eya1 dependent, similar to a genetic pathway elucidated in the Drosophila eye imaginal disc. Our results indicate that Eya1 controls critical early inductive signalling events involved in ear and kidney formation and integrate Eya1 into the genetic regulatory cascade controlling kidney formation upstream of Gdnf. In addition, our results suggest that an evolutionarily conserved Pax-Eya-Six regulatory hierarchy is used in mammalian ear and kidney development.  相似文献   

7.
Plzf regulates limb and axial skeletal patterning   总被引:20,自引:0,他引:20  
  相似文献   

8.
Perlecan is essential for cartilage and cephalic development.   总被引:19,自引:0,他引:19  
Perlecan, a large, multi-domain, heparan sulfate proteoglycan originally identified in basement membrane, interacts with extracellular matrix proteins, growth factors and receptors, and influences cellular signalling. Perlecan is present in a variety of basement membranes and in other extracellular matrix structures. We have disrupted the gene encoding perlecan (Hspg2) in mice. Approximately 40% of Hspg2-/- mice died at embryonic day (E) 10.5 with defective cephalic development. The remaining Hspg2-/- mice died just after birth with skeletal dysplasia characterized by micromelia with broad and bowed long bones, narrow thorax and craniofacial abnormalities. Only 6% of Hspg2-/- mice developed both exencephaly and chondrodysplasia. Hspg2-/- cartilage showed severe disorganization of the columnar structures of chondrocytes and defective endochondral ossification. Hspg2-/- cartilage matrix contained reduced and disorganized collagen fibrils and glycosaminoglycans, suggesting that perlecan has an important role in matrix structure. In Hspg2-/- cartilage, proliferation of chondrocytes was reduced and the prehypertrophic zone was diminished. The abnormal phenotypes of the Hspg2-/- skeleton are similar to those of thanatophoric dysplasia (TD) type I, which is caused by activating mutations in FGFR3 (refs 7, 8, 9), and to those of Fgfr3 gain-of-function mice. Our findings suggest that these molecules affect similar signalling pathways.  相似文献   

9.
K Sch?fer  T Braun 《Nature genetics》1999,23(2):213-216
During vertebrate embryogenesis, myogenic precursor cells of limb muscles delaminate from the ventro-lateral edge of the somitic dermomyotome and migrate to the limb buds, where they congregate into dorsal and ventral muscle masses. It has been proposed that the surrounding connective tissue controls muscle pattern formation in limbs. Regulatory molecules such as receptor tyrosine kinases like c-Met ( ref. 6) and those encoded by homeobox-containing genes, including c-Met (ref. 6), Tbx1 (ref. 7), Mox2 (ref. 8), Six1 and Six2 (ref. 9), Pitx2, Pax3 (refs 10,11) and Lbx1h (refs 12,13), are expressed in migrating limb precursor cells. The role of these genes in the patterning of limb muscles is unknown, although mutation of Pax3 or Met causes disruption of limb muscle development at an initial step, disturbing the epithelial-to-mesenchymal transition of the somitic epithelium. No limb muscle cells form in these mutants, and the early loss of myogenic precursor cells prevented an analysis of later functions of these genes during limb muscle development. Based on quail-chick chimaera studies, it was assumed that a cell-autonomous contribution of myogenic cells to the formation of individual limb muscles is negligible, and that an instructive role of limb mesenchyme is critical in this process. Here we show that Lbx1h determines migratory routes of muscle precursor cells in a cell-autonomous manner, thereby leading to the formation of distinct limb muscle patterns. Inactivation of Lbx1h, which is specifically expressed in migrating muscle precursor cells, led to a lack of extensor muscles in forelimbs and an absence of muscles in hindlimbs. The defect was caused by the failure of all muscle precursor cells of hindlimbs and of precursor cells of extensor muscles of forelimbs to migrate to their corresponding muscle anlagen. Our results demonstrate that Lbx1h is a key regulator of muscle precursor cell migration and is required for the acquisition of dorsal identities of forelimb muscles.  相似文献   

10.
Inherited limb malformations provide a valuable resource for the identification of genes involved in limb development. Brachydactyly type B (BDB), an autosomal dominant disorder, is the most severe of the brachydactylies and characterized by terminal deficiency of the fingers and toes. In the typical form of BDB, the thumbs and big toes are spared, sometimes with broadening or partial duplication. The BDB1 locus was previously mapped to chromosome 9q22 within an interval of 7.5 cM (refs 9,10). Here we describe mutations in ROR2, which encodes the orphan receptor tyrosine kinase ROR2 (ref. 11), in three unrelated families with BDB1. We identified distinct heterozygous mutations (2 nonsense, 1 frameshift) within a 7-amino-acid segment of the 943-amino-acid protein, all of which predict truncation of the intracellular portion of the protein immediately after the tyrosine kinase domain. The localized nature of these mutations suggests that they confer a specific gain of function. We obtained further evidence for this by demonstrating that two patients heterozygous for 9q22 deletions including ROR2 do not exhibit BDB. Expression of the mouse mouse orthologue, Ror2, early in limb development indicates that BDB arises as a primary defect of skeletal patterning.  相似文献   

11.
12.
The callipyge (CLPG) phenotype (from kappa(alpha)lambda(iota), "beautiful," and pi(iota)gamma(epsilon), "buttocks") described in sheep is an inherited muscular hypertrophy that is subject to an unusual parent-of-origin effect referred to as polar overdominance: only heterozygous individuals having inherited the CLPG mutation from their sire exhibit the muscular hypertrophy. The callipyge (clpg) locus was mapped to a chromosome segment of approximately 400 kb (refs. 2-4), which was shown to contain four genes (DLK1, GTL2, PEG11 and MEG8) that are preferentially expressed in skeletal muscle and subject to parental imprinting in this tissue. Here we describe the effect of the CLPG mutation on the expression of these four genes, and demonstrate that callipyge individuals have a unique expression profile that may account for the observed polar overdominance.  相似文献   

13.
Autosomal dominant aplasia of lacrimal and salivary glands (ALSG; OMIM 180920 and OMIM 103420) is a rare condition characterized by irritable eyes and dryness of the mouth. We mapped ALSG to 5p13.2-5q13.1, which coincides with the gene fibroblast growth factor 10 (FGF10). In two extended pedigrees, we identified heterozygous mutations in FGF10 in all individuals with ALSG. Fgf10(+/-) mice have a phenotype similar to ALSG, providing a model for this disorder. We suggest that haploinsufficiency for FGF10 during a crucial stage of development results in ALSG.  相似文献   

14.
The autosomal recessive form of Robinow syndrome (RRS; MIM 268310) is a severe skeletal dysplasia with generalized limb bone shortening, segmental defects of the spine, brachydactyly and a dysmorphic facial appearance. We previously mapped the gene mutated in RRS to chromosome 9q22 (ref. 4), a region that overlaps the locus for autosomal dominant brachydactyly type B (refs 5,6). The recent identification of ROR2, encoding an orphan receptor tyrosine kinase, as the gene mutated in brachydactyly type B (BDB1; ref. 7) and the mesomelic dwarfing in mice homozygous for a lacZ and/or a neo insertion into Ror2 (refs 8,9) made this gene a candidate for RRS. Here we report homozygous missense mutations in both intracellular and extracellular domains of ROR2 in affected individuals from 3 unrelated consanguineous families, and a nonsense mutation that removes the tyrosine kinase domain and all subsequent 3' regions of the gene in 14 patients from 7 families from Oman. The nature of these mutations suggests that RRS is caused by loss of ROR2 activity. The identification of mutations in three distinct domains (containing Frizzled-like, kringle and tyrosine kinase motifs) indicates that these are all essential for ROR2 function.  相似文献   

15.
The bones that comprise the axial skeleton have distinct morphological features characteristic of their positions along the anterior/posterior axis. We previously described a novel TGF-beta family member, myostatin (encoded by the gene Mstn, formerly Gdf8), that has an essential role in regulating skeletal muscle mass. We also identified a gene related to Mstn by low-stringency screening. While the work described here was being completed, the cloning of this gene, designated Gdf11 (also called Bmp11), was also reported by other groups. Here we show that Gdf11, a new transforming growth factor beta(TGFbeta) superfamily member, has an important role in establishing this skeletal pattern. During early mouse embryogenesis, Gdf11 is expressed in the primitive streak and tail bud regions, which are sites where new mesodermal cells are generated. Homozygous mutant mice carrying a targeted deletion of Gdf11 exhibit anteriorly directed homeotic transformations throughout the axial skeleton and posterior displacement of the hindlimbs. The effect of the mutation is dose dependent, as Gdf11+/- mice have a milder phenotype than Gdf11-/- mice. Mutant embryos show alterations in patterns of Hox gene expression, suggesting that Gdf11 acts upstream of the Hox genes. Our findings suggest that Gdf11 is a secreted signal that acts globally to specify positional identity along the anterior/posterior axis.  相似文献   

16.
17.
Hypophosphatemia is a genetically heterogeneous disease. Here, we mapped an autosomal recessive form (designated ARHP) to chromosome 4q21 and identified homozygous mutations in DMP1 (dentin matrix protein 1), which encodes a non-collagenous bone matrix protein expressed in osteoblasts and osteocytes. Intact plasma levels of the phosphaturic protein FGF23 were clearly elevated in two of four affected individuals, providing a possible explanation for the phosphaturia and inappropriately normal 1,25(OH)2D levels and suggesting that DMP1 may regulate FGF23 expression.  相似文献   

18.
19.
Mutations in LMAN1 (also called ERGIC-53) result in combined deficiency of factor V and factor VIII (F5F8D), an autosomal recessive bleeding disorder characterized by coordinate reduction of both clotting proteins. LMAN1 is a mannose-binding type 1 transmembrane protein localized to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC; refs. 2,3), suggesting that F5F8D could result from a defect in secretion of factor V and factor VIII (ref. 4). Correctly folded proteins destined for secretion are packaged in the ER into COPII-coated vesicles, which subsequently fuse to form the ERGIC. Secretion of certain abundant proteins suggests a default pathway requiring no export signals (bulk flow; refs. 6,7). An alternative mechanism involves selective packaging of secreted proteins with the help of specific cargo receptors. The latter model would be consistent with mutations in LMAN1 causing a selective block to export of factor V and factor VIII. But approximately 30% of individuals with F5F8D have normal levels of LMAN1, suggesting that mutations in another gene may also be associated with F5F8D. Here we show that inactivating mutations in MCFD2 cause F5F8D with a phenotype indistinguishable from that caused by mutations in LMAN1. MCFD2 is localized to the ERGIC through a direct, calcium-dependent interaction with LMAN1. These findings suggest that the MCFD2-LMAN1 complex forms a specific cargo receptor for the ER-to-Golgi transport of selected proteins.  相似文献   

20.
Proper serum phosphate concentrations are maintained by a complex and poorly understood process. Identification of genes responsible for inherited disorders involving disturbances in phosphate homeostasis may provide insight into the pathways that regulate phosphate balance. Several hereditary disorders of isolated phosphate wasting have been described, including X-linked hypophosphataemic rickets (XLH), hypophosphataemic bone disease (HBD), hereditary hypophosphataemic rickets with hypercalciuria (HHRH) and autosomal dominant hypophosphataemic rickets (ADHR). Inactivating mutations of the gene PHEX, encoding a member of the neutral endopeptidase family of proteins, are responsible for XLH (refs 6,7). ADHR (MIM 193100) is characterized by low serum phosphorus concentrations, rickets, osteomalacia, lower extremity deformities, short stature, bone pain and dental abscesses. Here we describe a positional cloning approach used to identify the ADHR gene which included the annotation of 37 genes within 4 Mb of genomic sequence. We identified missense mutations in a gene encoding a new member of the fibroblast growth factor (FGF) family, FGF23. These mutations in patients with ADHR represent the first mutations found in a human FGF gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号