首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了研究当量比对二甲醚(DME)氧化分解过程的影响,利用同步辐射真空紫外光电离及分子束取样质谱技术,并结合CHEMKIN化学反应动力学模拟软件对不同燃料氧气当量比下的低压预混层流DME/O2/Ar火焰进行了实验和数值模拟研究。测量和计算了不同当量比DME火焰中主要物种及主要中间物种的摩尔分数空间分布曲线,分析了当量比对DME火焰结构及燃料的氧化分解路径的影响。结果表明:甲醛和甲基是DME燃烧过程中最主要的中间物种;火焰中DME主要通过脱氢反应消耗,使DME产生脱氢反应的原子和原子团主要有H、OH、CH3和O,当量比不同则各基团在DME脱氢反应中的影响也不相同;DME的脱氢产物甲氧基甲基极不稳定,在火焰中一经生成就马上被消耗,其主要通过裂解反应消耗,在氧气过量的情况下,一小部分甲氧基甲基会发生加氧反应而被暂存起来。  相似文献   

2.
利用同步辐射真空紫外光电离结合分子束取样质谱技术,研究了当量比为1.5,燃料掺氢体积分数为0%、40%和80%的二甲醚/氢气/氧气/氩气低压层流预混火焰。测量了火焰温度曲线和火焰物种的摩尔分数分布曲线,分析了掺氢对火焰温度、燃烧主要产物CO和CO2以及主要燃烧中间物CH2O、CH3、C2H2和C2H4的影响。研究结果表明:在低压预混二甲醚/氢气/氧气/氩气火焰中,随着掺氢比的增大,火焰温度逐渐降低,火焰中CO、CO2、CH2O、CH3、C2H2和C2H4的摩尔分数逐渐减小;在后火焰区,CO与CO2的摩尔分数比随着掺氢比的增大而减小,说明掺氢有利于CO氧化成CO2,促进二甲醚完全燃烧。  相似文献   

3.
二甲醚均质压燃燃烧化学反应动力学机理数值模拟   总被引:4,自引:1,他引:3  
应用单区燃烧模型对二甲醚(DME)均质压燃燃烧(HCCI)的化学反应动力学过程进行了数值模拟研究.通过分析在内燃机压燃燃烧边界条件下DME燃料氧化反应过程中的关键基元反应速度、关键中间产物以及自由基的浓度随曲轴转角的变化,得到了DME燃料燃烧氧化的反应途径.结果表明,DME燃料均质压燃燃烧具有明显的两阶段放热特性,即低温反应放热和高温反应放热;燃料脱氢产物的两次加氧反应是低温反应发生的关键;脱氢产物的第一次加氧反应转向脱氢产物的裂解反应是高温反应的主要途径.DME低温反应阶段的主要氧化产物包括甲醛(CH2O)和甲酸(HOCHO).  相似文献   

4.
基于第一性原理计算,详细研究了完美的金红石型Ti O2(110)面上CH3OH转化为HCOOCH3的氧化机制。计算所得的基元反应的能垒证实了CH3OH在Ti O2(110)表面上经过脱氢和耦合反应生成了中间物CH3OC(=O)H2,然后经过脱氢生成了最终的产物HCOOCH3。  相似文献   

5.
运用CHEMKIN中的低压预混火焰模型,针对相同组分、不同官能团的乙醇和二甲醚,在摩尔质量相同时模拟了燃烧化学变化过程,比较了两者中间产物及OH,H,O自由基的差异;利用生成速率和敏感性分析方法,探讨了乙醇和二甲醚消耗反应的化学变化过程,并对燃烧产物乙烯和甲醛进行了敏感性分析.结果表明:不同官能团对燃料的燃烧及污染物形成有较大的影响;以氮气为载体,相同火焰高度下,二甲醚的反应速率大于乙醇的反应速率,二甲醚燃烧产生的OH,H,O自由基摩尔分数均大于乙醇;二甲醚燃烧生成的乙烯少于乙醇,甲醛多于乙醇,C—C键的断裂与重组是造成两者污染物差异的主要原因.  相似文献   

6.
基于密度泛函理论,运用VASP软件计算了甲醇在Ru改性单壁碳纳米管(Ru/CNTs)表面分解的全部基元反应所涉及的吸附能、活化能和部分反应速率常数,探究了甲醇在该催化剂表面的分解机理。根据吸附能确定了各物种的最优吸附位;其中,COH、CH和C最优吸附位是bridge~(Ru-C)(br1)位,其余物种的最优吸附位均为Top~(Ru)(T1)位。甲醇分解的第一步基元反应存在三条反应路径,即CH_3OH→CH_3+OH、CH_3OH→CH_2OH+H和CH_3OH→CH_3O+H;由活化能及反应速率常数分析可知,主反应路径为CH_3OH→CH_2OH→CHOH→COH→CO,即甲醇分解时其C—H键最易发生断裂,生成的CH_2OH分子经连续脱氢最终生成CO.因此,Ru/CNTs催化甲醇分解的主产物是CO和H,且不易积碳。  相似文献   

7.
甲醇空气预混层流燃烧的简化化学反应动力学机理   总被引:1,自引:1,他引:0  
基于甲醇氧化的详细反应历程,利用敏感性分析的方法,提出了一个用于描述甲醇空气预混层流燃烧速度的包含18种组分、28步基元反应的简化化学反应动力学机理.研究发现,在甲醇的氧化过程中,甲醇的分解反应及H、OH等自由基的链锁反应具有十分高的敏感性,其中HCO+M和H+O2分别是产生H、OH自由基的主要反应.计算结果与实验结果对比表明,该简化机理可以较合理地模拟当量比为0.6~1.2以及不同初始温度下的层流燃烧速度和火焰结构.与详细机理相比,该机理更适合与CFD三维数值模拟软件耦合.  相似文献   

8.
利用反射激波管模型,采用生成速率法(ROP)对含氧燃料燃烧过程中PAHs中的主要物质苯、萘、菲、芘进行了模拟分析,探讨了含氧燃料PAHs形成的途径.结果表明:在当量比1.0、初始温度1 600 K的初始条件下,乙醇、二甲醚和碳酸二甲酯燃烧过程中,苯、萘、菲、芘的生成速率在数量级上依次递减;苯主要通过炔丙基的聚合反应形成;萘生成的主要反应是苯基的二次脱氢加乙炔及苯基与乙烯基乙炔的化合反应;菲和芘的形成主要是通过脱氢加乙炔反应;H和OH自由基对PAHs的氧化起着重要的作用;对于第3体"M"参与的反应,燃用乙醇抑制PAHs的形成,燃用DME对PAHs的形成影响不大,燃用DMC促进PAHs的形成.  相似文献   

9.
纳米TiO2光催化氧化正丙醇和异丙醇反应的研究   总被引:2,自引:0,他引:2  
分别研究了纳米TiO2 在主波长为 364nm的汞灯光照下催化氧化 0 .1mol·L- 1 的n C3H7OH及i C3H7OH水溶液反应的速率 ,证明了该组反应均为零级反应 .用XRD、TEM、SSA和FT IR PAS对催化剂进行了表征 .根据FT IR PAS的检测结果提出了光催化氧化反应的机理i C3H7OH [O] CH3COCH3[O] CH3COOH [O] … [O] CO2 +H2 On C3H7OH [O] CH3CH2 CHO [O] CH3CH2 COOH [O] … [O] CO2 +H2 O  相似文献   

10.
应用量子化学密度泛函理论(DFT)对亚乙烯基自由基(.C2H2)和3O2的反应历程进行计算,在B3LYP/6-311++G(d,p)基组水平下优化了过渡态,中间体和产物的几何构型,并对其振动频率和零点振动能(EZPV)进行计算.结果表明,该反应是一个复杂反应,反应物3O2进攻.C2H2的边端C形成了加合产物H2CCOO(INT1),由H2CCOO经过不同的反应通道得到了不同的产物P1(CH2+CO2),P2(CH2CO+O),P3(CH2O+CO),P4(HCO+HCO),P5(H+CO+HCO),与实验所得的反应产物一致.H2CCOO(INT1)通过异构化生成的H2CC(O)O(INT2),以及进一步生成的H2C(O)CO(INT4)是反应能够进行并生成P3,P4,P5的关键.P1为主要产物,而生成产物P3,P4,P5的多条通道中也存在主要反应通道.  相似文献   

11.
为了解合成气燃烧特性,采用高精度光学测量技术PLIF,研究了不同生物质气化合成气在不同当量比下的燃烧火焰结构、OH基浓度以及火焰传播速度。采用CHEMKIN软件模拟计算了相同工况下合成气火焰传播速度,对引起温度变化和OH基浓度变化的原因进行了化学动力学分析。研究结果表明,合成气中CO含量的增加会使火焰整体结构变小,但对内焰影响程度不大,而H2含量的增加会增大火焰的传播速度。合成气燃烧过程中主要影响OH基生成的是R36:CO+OH=CO_2+H、R43:H+O2+M=HO_2+M和R45:H+HO_2=2OH这3个基元反应。  相似文献   

12.
正庚烷部分预混对冲火焰中苯环的生成机理   总被引:1,自引:0,他引:1  
采用详细反应机理对正庚烷部分预混对冲层流火焰中苯环与乙炔的生成进行了模拟,反应机理包括108种组分的572个基元反应.通过数值计算分析了部分预混对冲火焰的结构和主要反应物、反应生成物(O2、 n-C7H16、 CO2、 CO、 H2、 H2O)、中间产物(CH4、 C2H4、 C2H2、 C3Hx)以及苯的浓度分布,计算结果与实验结果吻合良好,说明该机理可以用于正庚烷层流对冲火焰中产物的预报.采用灵敏度分析与反应流分析方法对结果进行了分析,得出了正庚烷层流火焰中从正庚烷到苯环在低温(≤1 300 K)和高温条件下的主要反应链.  相似文献   

13.
N_2/CO_2/H_2O抑制甲烷燃烧数值分析   总被引:1,自引:0,他引:1  
建立了CH4-O2预混气体等容绝热燃烧、爆炸的零维数学模型,并以此为基础对惰性气体抑制CH4点火、燃烧和爆炸的微观化学动力学过程进行数值模拟.数值计算结果表明,N2,CO2和H2O的加入,大大延长了CH4-O2预混气体的点火延迟时间,同时降低了燃烧反应系统温度.N2,CO2和H2O能有效抑制CH4点火、燃烧和爆炸,一方面源于CH4和O2在混合气体中的摩尔浓度被降低,致使离解出的H,O,OH和CH3自由基减少;另一方面则源于N2,CO2和H2O作为第三体稳定分子参与三元碰撞反应,使高活性的自由基转变成了低活性的稳定分子.相同条件下,CO2和H2O除了重点参与三元碰撞反应外,还不同程度地参与其他链式反应,而N2则是完全不参与其他链式反应.这就导致N2,CO2和H2O的抑燃、抑爆的能力和效果存在差异.  相似文献   

14.
采用原痊红外和原位显微Raman光谱技术及XPS、吡啶(Py)吸附的漫反射UV谱、Py-TPD、CO2-TPD等方法对含氟稀土基催化剂上甲烷氧化偶联(OCM)反应活性氧物种、催化剂表面酸碱性进行了考察。在O2预处理和/或工作条件下的SrF2/La2O3,SrF2/Nd2O3,LaOF,BaF2/LaOF和BaF2/CeO2等催化剂上原位观测到超氧物种(O2^-),并在其中前4种催化剂上检测到O2^-物种与CH4反应生成的气相C2H4,CO2和表面碳酸盐等OCM反应主、副产物。这些结果为O2^-是相应催化剂上OCM反应的活性氧物种首次提供了直接的光谱证据。研究结果表明,催化剂的OCM反应性能与其表面酸碱性的强弱并无简单的对应关系。采用原拉时间分辨红外光谱和原位显微Raman光谱技术对SiO2和γ-Al2O3负载的Rh、Ru催化剂上甲烷部分氧化(POM)制合成气反应的研究表明,由CH4直接氧化生成CO和H2是Rh/SiO2上POM反应的主要途径,而燃烧-重整机理是Ru/γ-Al2O3和Ru/SiO2上CO和H2生成的主要途径,反应条件下催化剂表面氧(O^2-)物种浓度的差异很可能是导致这两种催化剂体系上POM反应机理不同的主要原因,其本质可能源于Rh和Ru对氧的亲合力的不同。  相似文献   

15.
基于详细基元反应机理,对微细通道内Rh催化剂表面低浓度CH4部分催化氧化的反应特性进行了数值研究,重点考察了进口温度、CH4/O2体积比以及H2O对CH4部分催化氧化的影响.结果表明:在Rh催化剂表面,CH4的反应为动力学控制,而O2的反应为扩散控制;由于O2的高反应性,CH4首先与O2发生氧化反应,完全氧化产物和部分氧化产物均有生成;当O2被消耗以后,CH4与H2O发生重整反应,而CO2的重整反应没有发生;C/O体积比的增加会导致重整区积碳量的增加,从而CH4的转化率以及部分氧化产物的生成量降低,甚至重整反应停止;添加H2O能够有效地抑制积碳,并促进H2和CO2的生成.  相似文献   

16.
为研究碳氢燃料燃烧温室气体N2O的排放,以乙烯/空气层流扩散火焰为对象,分析了燃烧过程中碳烟影响N2O生成的途径和方式.计算结果表明:碳烟可通过热效应和化学效应影响N2O的生成,且影响效果截然不同.在热效应方面,碳烟的辐射散热损失导致火焰温度降低,可抑制N2O的分解.在化学效应方面,碳烟的生成消耗了C2H2,使得由C2H2生成的HCCO摩尔分数降低,受反应HCCO+NO■HCNO+CO的影响,N2O生成量减少;此外,碳烟的生成同时促进了OH,O和H基的生成,OH基通过消耗NH可抑制N2O的生成,O基通过反应O+HCCO■H+2CO消耗HCCO,从而抑制N2O的生成,而H基则通过反应N2O+H■N2+OH消耗N2O.  相似文献   

17.
利用容弹球形火焰法测量了常温、常压下不同稀释系数、不同当量比时二甲醚-空气-N2/CO2混合气的层流燃烧特性.研究结果表明:拉伸火焰传播速度、无拉伸火焰传播速度、无拉伸层流燃烧速率均随稀释系数的增大而减小.Markstein长度值随稀释系数的增大而增大,二甲醚-空气混合气中加入稀释气后提高了火焰前锋面的稳定性.二甲醚-空气混合气进行少量稀释后即可提高火焰的稳定性,继续增大稀释系数对提高火焰稳定性的作用不明显.无拉伸层流燃烧速率最大值随着稀释系数的增加向浓混合气方向偏移.随着稀释系数的增大,二甲醚-空气-稀释气混合气的稀燃极限向浓混合气一侧移动,浓燃极限向稀混合气一侧移动,可燃范围变窄.CO2作为稀释气对火焰传播速率和可燃区域的影响大于N2作为稀释气对火焰传播速度和可燃区域的影响.  相似文献   

18.
利用容弹球形火焰法测量了常温、常压下不同稀释系数、不同当量比时二甲醚-空气-N2/CO2混合气的层流燃烧特性.研究结果表明:拉伸火焰传播速度、无拉伸火焰传播速度、无拉伸层流燃烧速率均随稀释系数的增大而减小.Markstein长度值随稀释系数的增大而增大,二甲醚-空气混合气中加入稀释气后提高了火焰前锋面的稳定性.二甲醚-空气混合气进行少量稀释后即可提高火焰的稳定性,继续增大稀释系数对提高火焰稳定性的作用不明显.无拉伸层流燃烧速率最大值随着稀释系数的增加向浓混合气方向偏移.随着稀释系数的增大,二甲醚-空气-稀释气混合气的稀燃极限向浓混合气一侧移动,浓燃极限向稀混合气一侧移动,可燃范围变窄.CO2作为稀释气对火焰传播速率和可燃区域的影响大于N2作为稀释气对火焰传播速度和可燃区域的影响。  相似文献   

19.
CH3与HO2自由基反应途径及位垒的计算研究   总被引:1,自引:1,他引:0  
采用量子化学从头算中的QCISD方法,在cc-pvdz和cc-pvtz基组水平上对CH3 HO2反应机理进行了计算研究,结果表明,CH3与HO2双分子自由基反应是一个复杂反应,反应可以在不同的电子态下经数个产物通道进行.在HOz自由基上的H直接转移到甲基自由基生成CH4 O2的反应途径上,存在一个低于反应物能量8.49kJ/mol的分子复合物.直接氢转移反应的计算位垒为3.07kJ/mol。与实验值零位垒相近.由CH3OOH生成CH2O和H2O反应的过渡态呈四元环构型,且具有Cs对称性,基于IRC计算,证明了该过渡态引导CH3OOH生成CH2O和H2O的反应机理是一个分子内氢迁移和H2O消除的协同过程.对由反应物生成CH3O和OH自由基的反应,除存在协同机理外,还提出了另一可能的通道,即反应物沿单线态位能面经过一个分步反应完成.也即反应物先经无位垒过程产生CH3OOH及其异构体CH3(O)OH,其中CH3(O)OH发生解离反应生成CH3OH和单线态原子氧,然后原子氧转化为三线态再与CH3OH进行反应生成CH3O和OH.  相似文献   

20.
利用公式△H=-0.1196n/A计算了乙醚和丙酮分别在氧气和空气中燃烧反应的温度,并推测了乙醚和丙酮燃烧反应的机理.乙醚在氧气中燃烧反应的火焰温度理论值为3272K,与测定温度3134K接近,误差为4.40%.丙酮在空气中燃烧反应的火焰温度理论值为1292K,与测定温度173K接近,误差为1.49%.根据乙醚和丙酮燃烧反应的火焰温度,推测乙醚和丙酮燃烧反应机理为:(1)O2+hv→2O·;(2)(C2H5)2O→4C+4H2+H2O(乙醚),CH3COCH3→3C+2H2+H2O(丙酮);(3)H2+O·→H2O+hv;(4)C+O·→CO+hv;(5)2CO+O2→2CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号