首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 55 毫秒
1.
简述了各种武器效能评定方法,并分析了其特点。建立武器参数效能模型,首先要挑选特征参数,提出采用知识约简方法选择武器的特征参数。利用支持向量机建立了参数效能模型,给出了实例和解决此问题的支持向量机源程序。通过实例与指数法和神经网络法的结果进行了比较,结果表明支持向量机比较精确和简单。  相似文献   

2.
基于支持向量机的智能决策方法   总被引:5,自引:0,他引:5  
王强  沈永平  陈英武 《系统工程》2005,23(10):111-116
分析多属性决策问题及现有方法,提出了基于支持向量机的智能多属性决策方法.首先,介绍了支持向量回归估计的学习算法.其次,探讨了基于支持向量机的智能决策原理.然后,提出了多属性决策支持向量机方法的实现算法.最后给出了一个算例.  相似文献   

3.
基于支持向量机的非线性模型预测控制   总被引:31,自引:0,他引:31  
支持向量机是基于统计学习理论的新一代机器学习技术。由于使用结构风险最小化原则代替经验风险最小化原则,使它较好地解决了小样本情况下的学习问题。又由于采用了核函数思想,使它把非线性问题转化为线性问题来解决,降低了算法的复杂度。提出了一种基于支持向量机的模型预测控制结构,并使用一个新的随机搜索优化算法来求解预测控制律,计算机仿真证明了所设计的控制算法的正确性和有效性。  相似文献   

4.
袁平  毛志忠  王福利 《系统仿真学报》2006,18(6):1458-1461,1465
在许多工业过程控制系统中,软测量技术由于解决了输出变量难以测量的问题而被广泛应用。软测量技术的核心问题是建立优良的软测量数学模型,支持向量机(SVM)以其优良的泛化特性而被应用到建立软测量模型中。基于多个模型的组合可以提高模型精度和鲁棒性的思想,提出多支持向量机(MSVM)组合模型的软测量建模方法.该建模方法通过减聚类方法将输入空间划分为一些小的局部空间.在每个局部空间中用最小二乘支持向量机(LS-SVM)建立子模型.为解决子模型相互之间的严重相关问题,提高模型的精度和鲁棒性,各个子模型的预测输出通过主元递归(PCR)方法连接.仿真研究表明,采用该建模方法能够达到较好的建模效果。  相似文献   

5.
发行流通股的上市公司财务数据是高维、复杂的,在利用财务指标对股票进行投资选择时往往难以全面考虑。为了从样本股的大量财务指标中提取出低维、有效的特征信息来构成支持向量机(SVM)的训练集,提出了一种启发式算法(HA)对原始财务数据进行预处理,在保存原始数据特征信息的同时提高了训练精度和训练效率。实证结果中,基于该启发式算法的支持向量机选股模型(HA-SVM)最终构造的股票组合的年收益显著高于同期基准组合的年收益。另外,进一步将被广泛使用于降维和数据特征提取的主成分分析法(PCA)与该启发式算法进行对比分析,结果表明,HA-SVM模型的训练准确率、预测准确率以及所选股票组合的年收益情况均显著高于PCA-SVM模型。  相似文献   

6.
将超平面偏置项平方加入到最小二乘支持向量回归机(LSSVMR)的目标函数中,提出直接支持向量回归机(DSVMR)。该方法增强了求解问题的凸性,与LSSVMR相比,只需要求解一个与核矩阵类似的对称正定矩阵的逆就可以得到问题的解,再使用Cholesky分解和SMW(Sherman-Morrison-Woodbury)求逆公式,降低了计算复杂度,加快了学习速度,而且逼近能力与LSSVMR近乎相同。最后数值试验表明DSVMR可行且完全具有上述优势。  相似文献   

7.
基于AR模型和支持向量机的转子系统故障诊断方法   总被引:1,自引:0,他引:1  
提出了基于AR模型和支持向量机的转子系统故障诊断方法.该方法对转子系统的振动信号建立AR模型,以AR模型主要的自回归参数和残差的方差作为特征向量,然后建立支持向量机分类器,进而判断转子系统的工作状态和故障类型.实验结果分析表明,该方法能有效地应用于转子系统的故障诊断.并通过支持向量机与BP神经网络的性能比较,说明了支持向量机的优点.  相似文献   

8.
基于支持向量机模型的高速公路运营效益评价   总被引:1,自引:0,他引:1  
为解决模糊综合评价在运营效益评价过程中存在的很难克服指标权重设置中的主观性问题,本文引进了统计学理论中的最新内容--支持向量机,并针对高速公路企业运营效益评价内容体系自身特点,建立高速公路企业的运营效益评价的支持向量机评价模型;通过对湖南省潭邵高速公路企业的运营效益进行评价的实例,更客观地验证了高速公路企业运营效益评价模型的可行性和有效性.  相似文献   

9.
基于支持向量机的低空飞行目标声识别   总被引:5,自引:0,他引:5  
目标识别是战场低空飞行目标声预警技术的核心内容之一。为了满足声预警系统的要求,建立的识别器必须高效、具有较好的推广能力。采用了一种新的分类器一支持向量机对目标进行了分类识别。首先简要描述了直升机、巡航导弹的声信号特性,说明了支持向量机的原理。以自回归模型参数为特征向量对3种直升机、一种巡航导弹共4类目标进行了识别,并同一种前向反馈神经网络进行了识别比较。支持向量机和该神经网络得到的识别率分别为88.1%和84.1%,结果表明此方法的有效性。最后分析了两种分类器识别错误的原因,给出了提高识别率的建议。  相似文献   

10.
把支持向量机方法引入到直升机智能化建模领域,用支持向量机建立了直升机自转着陆过程的旋翼转速模型,并采用序列最小优化算法求解.与神经网络模型相比,直升机的支持向量机模型具有结构简单、运算速度快、泛化能力高等特点.理论分析和仿真结果表明,应用支持向量机建立直升机的仿真模型是切实可行的.  相似文献   

11.
为寻求高效的粗糙集约简模型,基于可分辨关系提出决策分辨约简、依赖性和依赖度等概念.与以往粗糙集约简模型相比,为提高约简精确性,提出性能为O(|P‖U|)的等价类划分方法和性能为O(|P‖U/C|)的属性重要性度量方法.同时给出了相关定理和等价命题,论证了传统决策约简模型和决策分辨约简模型的一致性.并基于属性重要性给出性能为O(|C|~2|U/C|)的求核方法和性能为Max{O(|C‖U|),O(|C|~2|U/C|)}的约简模型.新模型充分考虑了核属性和其他属性间的关联,从而有效降低冗余率,解决了对比模型存在的问题.理论和仿真实例分析表明新模型高效且结果准确率高.  相似文献   

12.
在粗糙集模型中,α量化不可分辨关系是强与弱不可分辨关系的推广形式.然而值得注意的是,基于这三种不可分辨关系的粗糙集并未考虑数据中属性的测试代价.为解决这一问题,提出了测试代价敏感的α量化粗糙集模型,从二元关系的角度使得粗糙集模型代价敏感,并将新模型与基于强不可分辨、弱不可分辨以及传统α量化不可分辨关系的粗糙集模型进行了对比分析.进一步地,通过分析传统启发式算法在求解约简的过程中未考虑降低代价这一不足之处,提出一种新的属性适应性函数,并将其应用于基于遗传算法的约简求解中.实验结果表明该方法不仅可以降低由边界域所带来的不确定性而且同时降低了约简后的测试代价.  相似文献   

13.
双量化具有完备刻画粗糙集近似空间的重要功能,精度与程度逻辑差粗糙集模型则是一类基本双量化模型.本文主要针对该模型,深入探讨其在二分类情形下的属性约简.首先,讨论了基于模型上下近似的二区保持的基本性质,提出并研究了二区保持约简;接着,定义了基于变精度上下近似与程度上下近似的四区保持约简,得到了其与二区保持约简的层次关系;最后,利用一个统计决策表案例对两种属性约简及它们的层次性进行了说明.对双量化属性约简来讲,本文的二区保持约简具有泛化性,而四区保持约简则具有基础性与指导性,它们从而提供了一些基本思路.  相似文献   

14.
基于粗集理论,应用水文系列自身的历史资料作为预报因子,建立了水文单要素分级预报模式.在建立预报模式的过程中,由属性重要度和规则出现频度最大原则确定问题的最小规则集,即预报模式集,提出应用预报模式集对预报对象的支持强度最大原则作预报决策.建立的模式经应用于大伙房水库年径流预报,表明应用粗集理论提取的预报模式集,能有效地描述预报因子与预报量间的强非线性映射关系,具有较高的判别率;粗集预报模式由简单的决策规则组成,易于理解与使用.  相似文献   

15.
A new incremental support vector machine (SVM) algorithm is proposed which is based on multiple kernel learning.Through introducing multiple kernel learning into the SVM incremental learning,large scale data set learning problem can be solved effectively.Furthermore,different punishments are adopted in allusion to the training subset and the acquired support vectors,which may help to improve the performance of SVM.Simulation results indicate that the proposed algorithm can not only solve the model selection problem in SVM incremental learning,but also improve the classification or prediction precision.  相似文献   

16.
一种新的支持向量机快速训练算法   总被引:1,自引:0,他引:1  
针对大规模数据集的分类中支持向量机的训练,为解决选取样本集合边界向量时需事先判定样本集合是否线性可分的问题,提出一种基于密度法的支持向量预选取方法。该方法不需要事先判定训练样本是否线性可分,具有较强的抗击噪音点和孤立点干扰的能力,并且计算简单,易于实现。实验结果证明了这种方法是有效的。  相似文献   

17.
针对传统支持向量机由于样本中存在孤立点或噪声而导致的过学习问题,通过分析模糊支持向量机和临近支持向量机的特点,借鉴它们的优点:模糊隶属度和临近超平面,提出了一种数据处理方法。该方法考虑了样本点到类中心的距离与样本对分类的贡献率的关系。这种改进使分类更为清晰和准确。结果表明:采用新的模糊隶属度模糊临近支持向量机算法有较高的识别率,但也耗费了较多的训练时间。  相似文献   

18.
1.INTRODUCTION Thedatabasedmachinelearningasastatisticlearning methodplaysanimportantpartinmodernintelligent technology.Basedontheresearchofstatisticlearning theory,VapnikVNpointedouttheproblemofexpe riencedriskminimization,andpresentedthenotionof minimizingstructurerisk.Upontheabovetheory,herecomesthesupportvectormachine(SVM)algo rithm[1].Itisespeciallyaimedatfinitesamples,and wecanfinallygettheoptimalsolutionsfortheexist ed informationbutnotforthesituationoftraditional statistictheory…  相似文献   

19.
基于灰色支持向量机的新型预测模型   总被引:11,自引:1,他引:11  
分析了灰色预测方法和支持向量机各自的优缺点,提出了将二者相结合的一种新的预测模型———灰色支持向量机预测模型.新模型发挥了灰色预测方法中“累加生成”的优点,弱化了原始序列中随机扰动因素的影响,增强了数据的规律性,同时避免了灰色预测方法及模型存在的理论缺陷.实验结果表明文章所提出的预测模型有效可靠,为提高预测精度提供了新的途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号