首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
基于遗传算法优化的GM(1,1)模型及效果检验   总被引:14,自引:1,他引:14  
对变化较平稳的数据和变化幅度较大的非平稳数据两种序列建立的 GM(1 ,1 )模型 ,分别用加速遗传算法 (AGA)和最小二乘法 (LSM)对模型参数求解 .结果表明 ,对变化较平稳数据序列 ,两种参数求解法建立的预测模型的拟合优度和预测精度相差无几 ;对变化幅度较大的非平稳数据序列 ,基于 AGA的 GM(1 ,1 )模型的拟合优度和预测精度远高于基于 LSM的 GM(1 ,1 )模型的拟合优度和预测精度 .  相似文献   

2.
离散GM(1,1)模型的特性与优化   总被引:2,自引:0,他引:2  
GM(1,1)模型在对纯指数序列进行拟合时通常仍然存在偏差,对原始序列和发展系数有太多限制.离散GM(1,1)模型与原模型的很多性质很相似,可以看成是原模型的精确形式,而且对发展系数和原始序列没有非负限制,因此对于离散GM(1,1)模型的特性研究就极为重要.文章对离散模型模拟数据增长率特点、对指数序列的拟合以及数乘变换下的参数特性进行了理论证明.研究表明离散GM(1,1)模型可以完全拟合指数序列.数乘变换不改变原始序列的模拟精度,为解决灰色预测模型的病态性提供了思路.文章提出了分段修正离散GM(1,1)模型并对建模机理进行了证明.应用实例表明了该模型能够显著提高模拟精度.  相似文献   

3.
针对离散GM(1,1)模型的模拟序列未能反映出原始数据序列的级比动态变化这一问题,通过对原始数据序列的级比序列进行建模,建立基于级比序列的级比离散GM(1,1)预测模型。该模型较好地保留了原始序列级比的动态性,结合原始序列与级比序列的关系,获得原始序列的模拟值。数值计算结果表明,基于级比序列的离散GM(1,1)预测模型,无论在相对误差还是平均相对误差的变动幅度方面,都优于离散GM(1,1)模型。  相似文献   

4.
优化的GM(1,1)模型及其在农村劳动力转移预测中的应用   总被引:1,自引:0,他引:1  
GM(1,1)预测模型一直是灰色系统理论研究者关注的热点。在已有灰色理论的基础上,利用“最小二乘法”确定GM(1,1)白化函数的时间响应函数中的常数C,摈弃了传统GM(1,1)把原始序列中X(0)(1)作为初始条件的做法,从而构建了GM(1,1)的优化模型。最后,以河南省农村劳动力转移预测为例,进行两类预测模型的模拟精度比较,并进行了预测。表1,参7。  相似文献   

5.
用GM(1,1)模型预测地基极限承载力   总被引:4,自引:0,他引:4  
利用灰色理论中GM(1,1)模型预测地基极限承载力.这种方法既具有较高的预测精度,又可充分利用现有大量没有加载到破坏阶段的荷载试验成果,从而节省了大量的试验经费.  相似文献   

6.
基于GM(1,1)模型和线性回归的组合预测新方法   总被引:17,自引:0,他引:17  
为解决 GM(1 ,1 )预测中存在的历史数据的跳变问题 ,依据灰色灾变预测原理 ,利用线性回归适用短期预测的特点 ,提出了一种新的预测方法 :用 GM(1 ,1 )模型预测将来可能的数据跳变日期点 ,对其他非跳变点使用分段线性回归函数进行预测 .通过对浙江省农村用电量的预测 ,结果表明该方法很好地克服了 GM(1 ,1 )模型和线性回归模型的缺陷 ,在实际中取得了较好的效果 .  相似文献   

7.
基于遗传算法的改进的GM(1,1)模型IGM(1,1)直接建模   总被引:6,自引:0,他引:6  
CM(1,1)模型一般以模型还原值与实际值平均相对误差检验模型的模拟精度。本文以模型还原值与实际值平均相对误差最小化为目标函数将CM(1,1)模型转化成一个不用进行灰微分方程参数辨识的优化模型,称之为改进的GM(1,1)模型,简称IGM(1,1)。IGM(1,1)避开了灰微分方程参数辨识时传统的优化无法求解,本文针对IGM(1,1)模型的直接建模。由于IGM(1,1)目标函数非连续,不可导,用传统的优化无法求解,本文针对IGM(1,1)模型的模拟特性设计了求解该优化模型的遗传算法并进行了算例验证,秋解结果表明了IGM(1,1)模型IGM(1,1)模型。  相似文献   

8.
基于振荡序列的GM(1,1)模型   总被引:7,自引:1,他引:7  
针对GM(1,1)模型对非负光滑单调序列的预测精度较高,而对振荡序列的预测效果不理想的情况.提出了先通过加速平移变换将振荡序列变为单调增加序列,然后再对加速平移变换后的序列进行加权均值生成变换,再以加权均值生成变换得到的序列建立GM(1,1)模型进行预测.通过具体算例的计算表明,这种方法能够提高GM(1,1)模型的预测精度,可应用于对振荡序列建立GM(1,1)模型,从而扩大了GM(1,1)模型的应用范围.  相似文献   

9.
基于遗传算法的GM(1,1,λ)模型   总被引:15,自引:0,他引:15  
用差分格式将灰色模型 GM(1,1)模型推广为 GM(1,1,λ)模型 ,λ=0 .5即为 GM(1,1)模型 ;由于参数λ与误差之间存在明显的非线形特性 ,而且某些目标函数不可微 ,使得传统的优化方法无能为力 ,文中应用遗传算法求解最优的 λ值 ,然后进行预测 .由 λ的取值知 ,GM(1,1,λ)模型的预测精度一定比 GM(1,1)高 ,数值计算的结果也证实了这一点 .  相似文献   

10.
GM(1,1)模型的背景值构造方法和应用(Ⅰ)   总被引:84,自引:1,他引:84  
灰色 GM( 1 ,1 )模型对高增长指数序列拟合常常产生滞后误差 ,作者认为 GM( 1 ,1 )模型中背景值构造方法是影响其精度和适应性的关键因素 .从此角度出发 ,对背景值构造方法进行研究 ,重构了一个表达形式简洁、计算简单、适应性极强的背景值计算公式 .新的背景值计算公式的一个显著特点是它使 GM( 1 ,1 )模型具有对建模结果进行优化的能力 ,能获得最佳的拟合和预测精度 .它使 GM( 1 ,1 )模型同时适应于低增长指数序列和高增长指数序列建模 ,它是提高 GM( 1 ,1 )模型精度和适应性的关键技术 .算例结果的精度充分说明了它的有效性 .  相似文献   

11.
传统卡尔曼滤波器依赖目标运动状态的数学模型,当目标运动数学模型不精确或不能够用线性状态空间模型描述时,跟踪滤波会发散。针对这一问题,提出了一种基于GM(1,1)(Grey model)模型的跟踪卡尔曼滤波方法。在卡尔曼滤波过程中,迭代所需的预测值不再依赖所建立的目标运动状态方程,而是用前几个时刻的估计值建立灰色微分方程来预测下一时刻的值,其预测精度高,滤波性能提高,特别在目标机动的时间内跟踪滤波效果要好于传统方法。仿真结果表明,是一种可行的机动目标跟踪方法。  相似文献   

12.
传统GM(1,1)模型存在不能预测波形序列的问题。在GM(1,1)模型和残差GM(1,1)模式的基础上引入了新陈代谢数组,经重新推导后得到递推GM(1,1)模型和残差递推GM(1,1)模型,将前者模型的解与后者取对数后的模型的解反相相加后,得到自适应GM(1,1)模型的解。以实例数据对上述4种方法进行仿真和比较,结果表明,自适应GM(1,1)模型较其他方法有更好的预测效果,从根本上解决了GM(1,1)模型对波形序列的预测问题。  相似文献   

13.
一种新的基于GM(1,1)模型的粗大误差判别模型   总被引:3,自引:0,他引:3  
针对未知概率分布的小样本数据识别问题,提出了一种新的基于GM(1,1)模型的粗大误差外推判别模型.介绍了判别原理和步骤,基于GM(1,1)建模精度和检测值精度确定判别门限,并对样本量、判别精度及方法的合理性等相关问题进行了讨论.实例仿真取得了较好的判别结果,结果表明该方法对数据没有分布要求,简单可行.  相似文献   

14.
针对因发展变化受众多因素影响而具有饱和增长趋势或单峰特性的原始波动序列,为了提高预测精度,以灰色GM(1,1)幂模型为基础,构建了自忆性原理与优化GM(1,1)幂模型的耦合预测模型,用动力系统自忆性原理来克服传统灰色模型对初值比较敏感的弱点。结果表明,新构建模型能够充分利用系统的多个历史时次资料,模拟和预测精度都高于传统优化GM(1,1)幂模型,进一步拓展了灰色模型的应用范围。最后,以我国高中升学率的数据为例验证了所构建模型的优越性和有效性。  相似文献   

15.
估计GM(1,1)模型中参数的线性规划方法   总被引:1,自引:0,他引:1  
估计GM(1,1)模型中的参数通常采用最小二乘准则,而在模型精度检验时又常采用平均相对误差。在平均相对误差达到最小准则或最大相对误差达到最小准则时,分别给出了估计GM(1,1)模型中参数的线性规划方法,并通过实例给出了不同极小化准则下数值结果的对比。数值结果表明,采用平均相对误差达到最小准则和最大相对误差达到最小准则比通常采用的最小二乘准则更合理,效果更好。  相似文献   

16.
基于GM(1,1)幂模型的振荡序列建模方法   总被引:2,自引:0,他引:2  
针对小样本振荡序列的预测问题,提出了基于单变量一阶灰色幂模型(简称GM(1,1)幂模型)的振荡序列建模方法。基于GM(1,1)幂模型中参数之间的关系,构建了一个非线性优化模型来寻求模型参数的最佳值,以此实现对振荡序列的高精度预测。结果表明,建模方法能够较好地体现数据的波动特征,且易于在计算机上实现,进一步拓宽了灰色模型的应用范围。最后以实例验证了所建模方法实用性和有效性。  相似文献   

17.
针对灰色GM(1,1)预测模型提高精度的问题, 提出了新的背景值优化公式代替传统的背景值优化公式, 再进行边值修正的方法. 该方法采用新的背景值优化公式求出紧邻均值生成序列, 并使用均方误差和最小准则, 针对原始序列和生成序列进行边值的修正. 通过对优化后的模型实证测算, 验证了修正后的模型在提高预测精度上的可行性和有效性.  相似文献   

18.
为了进一步完善灰色幂模型体系, 分析了经典GM(1,1)模型和GM(1,1)幂模型之间的变换关系, 在GM(1,1)幂模型的定义型和白化型的基础上, 推导了GM(1,1,x(2))幂模型、GM(1,1,x(1))幂模型、GM(1,1,b)幂模型、GM(1,1,exp)幂模型和GM(1,1,C)幂模型五种派生型GM(1,1)幂模型, 构建了GM(1,1)幂模型群. 结果表明, GM(1,1)幂模型与GM(1,1)模型的时间响应函数在本质上是一致的, 不同的GM(1,1)幂模型派生模型在结构、内涵、解析式、功能方面存在一定的区别, 体现了灰色系统解非唯一性原理. 在实际应用中, 可以依据一定的准则, 在默认解群中找出一个最合适的白化解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号