共查询到17条相似文献,搜索用时 46 毫秒
1.
应急物资配送动态调度的粒子群算法 总被引:6,自引:1,他引:6
应急条件下的物资配送与调度面临着需求信息不准确、需求紧急程度差异和运输路网动态变化的复杂环境,借助模糊数学中的三角模糊数描述应急物资需求量,利用连续速度时间依赖函数模拟真实的动态路网交通状况,并考虑不同需求点的需求紧急程度差异,建立了针对性的应急物资配送动态调度的多目标数学模型;通过设计粒子群优化算法,采用“离散-连续向量混合编码”方案和加权整合的适应值函数导向机制,结合连续更新的位置和速度操作策略,建立了针对这类含有离散和连续变量组合的优化模型的快速高效求解算法;最后,结合两个实际的算例进行了数值实验与分析,通过与用Matlab求得的解析解的比较,证明算法收敛速度快、鲁棒性强,从而为应急条件下的物资配送动态调度提供了有效和可靠的方法. 相似文献
2.
3.
针对开关系统,给出了数学模型并引出了其最优控制问题,提出开关系统最优控制问题的加权粒子群算法,给出了相关的推理过程及算法步骤。加权粒子群算法不必找出支付泛函关于时间的显式表达,就可以找到其最优解,同样适用于其子系统为非线性的情形。分析了粒子群算法快速全局优化的特点,说明该算法能找到优化问题的全局最优解。以开关动态系统和一般开关线性二次问题的数值算例验证了该方法的有效性。 相似文献
4.
车辆调度问题是具有复杂约束条件的组合优化问题,在理论上属NP-hard问题.考虑车辆数目最少和车辆运行时间最短,建立了具有时间约束的多目标车辆调度模型.并采用粒子群算法(PSO)求解车辆调度问题,以寻求最优车辆调度方案.在实例中通过运用粒子群算法和遗传算法进行比较分析,结果表明,PSO算法简单可行,在优化性能、收敛速度及鲁棒性等方面优于遗传算法,能较好地解决组合优化问题. 相似文献
5.
求解Job Shop调度问题的粒子群算法研究 总被引:4,自引:0,他引:4
为解决单一粒子群算法求解Job shop调度问题存在的不足,提出一种基于交换序的混合粒子群算法,提高了这类问题的求解质量.在混合粒子群算法中,采用粒子群算法进行大范围全局搜索.根据Job Shop调度问题解的特征,提出基于关键工序的邻域选择方法,并将基于这种方法的禁忌搜索算法作为局部搜索算法,增强了粒子群算法的搜索能力.采用混合粒子群算法对13个难解的benchmark问题进行求解,在较短的时间内,得到的最优解和10次求解的平均值优于并行遗传算法和粒子群算法.由此说明本文所提出的混合粒子群算法是有效的. 相似文献
6.
7.
8.
9.
基于分群粒子群优化的传感器调度方法 总被引:1,自引:0,他引:1
对面向目标跟踪任务的多传感器多任务调度问题进行研究。考虑到探测目标的运动特性,采用扩展卡尔曼滤波法实施目标跟踪,以成功调度任务的综合优先权、目标跟踪精度以及传感器网络的能源消耗为指标,建立了多传感器多任务调度的混合整数规划模型。提出一种基于分群机制的分群粒子群算法对模型进行求解,该方法通过粒子分群,提高对问题域的全局搜索能力,避免算法过快收敛和发生早熟。实验结果表明,该方法用于传感器调度问题,具有较好的求解性能。 相似文献
10.
针对同步时序电路的初始化问题,提出了一种新的实现方法。当时序电路中有未确定状态的触发器时,就不能顺利完成该电路的测试生成,因此初始化是时序电路测试生成中的关键问题。时序电路初始化的核心就在于寻找一个测试序列,把电路引导到一个确定的状态。利用粒子群优化算法生成最短的初始化序列,使最优粒子最大限度地初始化电路中的触发器。针对ISCAS’89标准时序电路的仿真结果表明,与其他现有初始化方法相比,该算法能在初始化触发器数量和序列长度上取得更好的结果,证明了该算法的有效性。 相似文献
11.
针对微粒群优化算法的早熟停滞缺陷问题,提出了一种基于种群年龄模型的动态粒子数微粒群优化算法. 该算法建立了生物种群年龄模型,将每个粒子划分为不同的年龄段,动态地依据种群环境和个体信息有效地控制种群的粒子数规模;设计了较优粒子的生殖策略和较差粒子的死亡策略,增加群体的多样性和减少冗余计算量,以保证算法获得最优性能. 将此算法与其他改进算法进行比较,仿真测试结果表明,新算法具有较高的全局搜索成功率和效率,计算量显著降低,优化精度显著提高,能够有效地避免算法陷入局部停滞的缺点. 相似文献
12.
应用改进微粒群算法求解Job-shop调度问题 总被引:6,自引:0,他引:6
针对微粒群算法在求解实际问题过程中会出现早熟的现象,提出一种改进的微粒群算法。该算法利用记忆库来动态调整惯性权重值,增快了算法的收敛速度。同时结合进化、灾变机制避免了算法陷入局部极值的问题。在列出改进算法的具体步骤基础上,通过实际的车间调度仿真实例证明了算法的有效性,可以得到比启发式、遗传算法更佳的调度效果。 相似文献
13.
针对以灰度图像为掩体信号的数据隐藏,提出了一种基于粒子群优化技术的空间域信息隐藏方法。该方法首先运用粒子群优化算法快速搜索到一个较优的映射矩阵,然后将待隐藏的信息通过该映射进行置换;最后,将置换结果嵌入到掩体图像灰度信息中。实验结果表明,与基于遗传算法的信息隐藏方法相比,该算法花费时间少,嵌入信息后的图像质量好。 相似文献
14.
基于改进粒子群算法的系统辨识新方法 总被引:1,自引:0,他引:1
提出了一种利用改进的粒子群优化算法对系统进行辩识的方法.该方法是将典型的数学模型的相互组合而构成系统模型的新辨识方法,即首先将系统结构辨识问题转化为组合优化问题,然后采用粒子群优化算法同时实现系统的结构辨识与参数辨识.为了进一步增强粒子群优化算法的辨识性能,提出了利用一种改进的粒子群优化算法.最后,给出了仿真示例,结果验证了所给的系统辨识方法的合理性和有效性. 相似文献
15.
粒子群优化(particle swarm optimization, PSO)算法基本思想是试图通过模拟鸟群觅食中的迁徙和聚集等行为获得连续非线性函数的最佳值,其仿生算法产生于对鸟群寻食过程中飞行方向与飞行速度等的隐喻。近年对粒子群算法经典算法的研究,虽然在速度及精度上有所改进,但由于缺乏细致化仿生(precise bionic metaphor, PBM),改进效果并不太明显。通过在PSO算法中引入飞鸟寻食细致化行为特征隐喻,即在算法中同时导入满意粒子局地细致化寻优和探索粒子随机寻优过程,进而提出了一种新的基于细致化仿生的改进PSO算法;对改进算法和经典算法进行了性能比较,结果显示所提算法在收敛速度和求解精度方面较经典算法有很大程度的改善。 相似文献
16.
提出了一种基于实数编码的粒子群优化和遗传算法的混合优化算法,该算法首先由粒子群优化进化一定代数后,将最优的M个粒子保留,去掉适应度较差的pop_size M个粒子。然后以这最优的M个粒子的位置值为基础,选择复制得到pop_size M个个体,并进行交叉、变异等遗传算法运算。最后将保留的M个粒子位置值与遗传算法进化得到新的pop_size M个体合并形成新的粒子种群,进行下一代进化运算。该算法在进化过程中能进行多次信息交换,使两种算法互补性得到更充分的发挥。通过5个函数优化实例与其他多种算法的对比研究,表明该算法收敛性能好,运算速度快,优化能力强。此外,还研究了最优粒子保留规模M以及粒子群优化进化较少代数规模对算法性能的影响。 相似文献
17.
基于混沌粒子群优化的系统级故障诊断策略优化 总被引:4,自引:0,他引:4
针对诊断设计优化过程中的关键问题--故障诊断策略优化,提出了基于混沌粒子群优化算法的系统级故障诊断策略优化方法。该算法利用混沌优化不重复遍历系统所有状态的特点,引导粒子在全局范围内搜索,从而克服了粒子群算法“早熟”收敛的缺点。这使算法不仅具有较快的收敛速度,又保证了获得的最优解的可靠性,为获得有效的系统级故障诊断策略提供了可行的方法。最后,给出了该算法在诊断策略优化过程中的关键步骤,通过仿真证明了该算法对于系统级故障诊断策略优化的有效性。 相似文献