首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 87 毫秒
1.
基于民用飞机货舱低压变动环境下火灾特点,进一步探寻低压双流体细水雾灭火技术在低压环境的应用。采用马尔文粒径仪和低压燃烧测试舱等设备,对自行研发N2-水低压双流体细水雾系统进行测试,研究该系统的雾场特性和低压环境下的灭火特性机理。发现N2压力低于0.4Mpa便可得到雾场均匀、粒径较小且方便可调双流体细水雾。低压舱内灭火实验结果表明,在低压下可有效地扑灭油池火,灭火时间呈现随环境压力降低而减小趋势。揭示火焰周围逆流扩散流动场和水雾对火焰与油面的冷却隔离作用,在抑灭油火中的重要作用。  相似文献   

2.
高压细水雾喷头流量系数与雾场特性的关系   总被引:1,自引:1,他引:0  
喷头流量系数是细水雾系统设计喷头选型的关键设计参数之一,其决定细水雾的雾场特性从而直接影响细水雾系统的灭火性能。为了研究高压细水雾喷头流量系数与雾场特性的关系,构建了喷头及喷嘴雾场特性冷态实验平台,实验测量了两种流量系数的喷头(K=1.0,2.5)及其喷嘴的雾滴粒径分布、雾化锥角、雾场强度等雾场特性参数。实验结果表明系数K从1.0增大至2.5,喷嘴及喷头的雾化锥角、雾滴粒径分布及雾场强度都显著增大。  相似文献   

3.
张华杰  梁天水 《科学技术与工程》2021,21(32):14022-14027
综合管廊中电缆存在一定的火灾危险性,为研究高压细水雾对综合管廊的灭火效果,针对I型结构地下综合管廊,通过火灾数值模拟软件在综合管廊中开展不同粒径细水雾条件下灭火模拟。分析温度场、烟气流动以及能见度变化情况,对管廊内在相同火源功率下不同粒径细水雾灭火效能分析发现,选定的六种粒径细水雾中,200 μm细水雾具有快速降温效果,50 μm细水雾灭火效果最好,细水雾粒径越小对烟气层沉降的影响越显著。  相似文献   

4.
随着经济和人口的高速增长,地铁和轻轨飞速发展,地铁车辆系统的安全及可靠性非常重要,尤其是在地铁车辆上设置火灾的预防和救助系统,防止火灾发生及蔓延尤为重要,本文着重研究高压细水雾在地铁车辆上的理论应用。  相似文献   

5.
民机飞行过程存在的低压环境对货舱火灾防控与安全带来一定挑战.该文基于全尺寸低压模拟舱初步开展了货舱低压环境下细水雾抑灭大尺度航空煤油表面池火的有效性研究.结果 表明:无细水雾时,随着环境压强降低,池火质量损失速率、火焰温度和辐射热通量均降低,而火焰高度增加;初始环境压强为76 kPa时,点火之后舱内压强快速增加,过压值...  相似文献   

6.
高压细水雾灭火系统的雾滴直径测量与灭火试验   总被引:5,自引:0,他引:5  
介绍了移动式高压细水雾灭火系统的工作原理,利用三维Doppler粒子测速仪(3DPDPA),对系统采用的系列喷嘴在不同压力工况下,产生的雾滴在1000 mm截面处的Sauter平均直径(SMD)进行测量.结果表明,雾滴SMD从中心到边缘逐渐增大;当喷雾压力大于3 MPa后,喷雾压力和喷嘴出口直径的变化对雾滴SMD影响极小;系列喷嘴产生的雾滴SMD都满足小于100μm的设计要求.参考其他火灾灭火试验标准进行的对比试验表明,系统能迅速扑灭1A固体和1B液体火灾,且用水量少,水渍损失极小;对比试验直接用水喷淋不能扑灭1B液体火灾,可以扑灭1A固体火灾,但是用水量较大.  相似文献   

7.
黄松 《科技资讯》2014,12(23):105-106
本文列出了地铁火灾的特性以及防治中应该注意几个主要问题并提出了自己的观点,并通过列举、分析了高压细水雾在地铁火灾防治上应用的可能性和经济性,为地铁火灾防治提供一些参考.  相似文献   

8.
通过实验研究了沥青喷雾燃烧特性以及细水雾抑制沥青喷雾火的有效性.细水雾雾场特性由LDV/APV系统测量.实验中的温度数据由热电偶测量,沥青喷雾火自由燃烧时火焰结构则由热像仪获取.实验结果显示,喷雾火燃烧时最高温度发生在火焰团内部.当压力比比较高时(pw/Pf>2.65),细水雾对沥青喷雾火有较好的抑制熄灭作用;而当压力...  相似文献   

9.
为研究矿井综采工作面喷雾除尘时,矿井风速对喷雾粒径的影响规律,利用模拟巷道喷雾降尘实验系统,在5个不同矿井风速影响下对4个喷雾压力、4个不同孔径喷嘴、5个不同轴线距离的喷雾粒径进行试验研究.利用Origin对试验数据进行曲线绘制,并将曲线进行了趋势分析与原因分析.结果表明:测点位置为0.68 m时,随矿井风速的增大,喷雾粒径呈增大趋势,并得出最小粒径99.25μm与最大粒径214.7μm的试验条件;不同喷雾压力和喷嘴孔径在矿井风速影响下程度不同,并将影响曲线进行对比和排序;测点轴线距离越远,喷雾粒径越小,即D_aD_bD_c D_d D_e;测点位置为0.38,0.68,0.95 m处的喷雾粒径随矿井风速的增大而增加,测点位置为1.28,1.58 m时,喷雾粒径在矿井风速0.25~0.65 m/s呈增大趋势,在0.65~1.05 m/s时呈减小趋势.试验研究结果为矿井喷雾除尘时,对于喷雾压力、喷嘴孔径、矿井通风风速的大小选择以及喷嘴布置的合理性提供参考.  相似文献   

10.
NaCl对细水雾雾特性影响的实验研究   总被引:10,自引:0,他引:10  
利用LDV/APV实验系统对不同浓度NaCl溶液所形成细水雾的雾特性进行实验研究,得到不同类型细水雾在某一射流截面上的粒径分布和三维速度分布。研究表明,随着NaCl浓度的提高,在靠近射流轴线区域细水雾粒径有明显增加,而速度则显著下降。溶液浓度对细水雾动能分布的均匀性有影响。适当的添加剂配比浓度能够提高细水雾动能分布的均匀性。研究结果对评估添加剂和细水雾雾特性的影响程度有重要意义。  相似文献   

11.
为探究KCl(氯化钾)添加剂对低压细水雾抑灭性能的影响,课题组在1 m3密闭空间内开展了含不同浓度KCl的低压细水雾对正庚烷池火的抑灭实验。基于灭火过程、灭火时间、火焰温度、灭火机理等维度,分析了含KCl细水雾的灭火特性。结果表明: KCl添加剂可有效缩短低压细水雾灭火时间,缩短的灭火时间主要集中在火焰撕裂、游走阶段;油盘面积增大后燃烧更剧烈,灭火所需KCl浓度要求更高;含4%KCl低压细水雾灭直径6、8、10 cm的油盘火时,与纯细水雾相比,可分别缩短灭火时间82%、79%、73%,增大降温速率1.5倍左右;含KCl细水雾主要通过消耗、湮灭链式燃烧反应所必需的自由基来达到更优的抑灭效果,Cl-主要切断链的引发阶段,K+主要切断链的传递、终止阶段。可见KCl添加剂能显著强化低压细水雾的抑灭性能。  相似文献   

12.
压力式细雾喷嘴雾化特性的研究   总被引:10,自引:0,他引:10  
对液体的雾化机理及喷嘴的雾化特性进行了理论分析,用因次分析的方法建立了细密雾化喷嘴的准则关系式,用最小二乘法回归了TF型喷嘴平均直径的准则关系式.  相似文献   

13.
低压闪蒸液滴温度与相变过程的研究   总被引:4,自引:0,他引:4  
在低压环境P=200—800Pa的工况范围内,研究了在闪蒸结冰过程中,液滴温度的变化与环境压力之间的关系.试验结果表明:在低压闪蒸结冰过程中,随着气压的降低,因为过热,液滴内部产生气泡的强度增加.液滴的破碎和液滴内部气泡的生长速度与环境压力有直接关系;在闪蒸过程中,液滴处于热力学非平衡状态,表现在液滴外侧发生的温度跳跃很小,而在液滴内部发生的温度跳跃很大;由于液滴蒸发的影响以及闪蒸过程中蒸发波的产生,即使在真空状态下,液滴周围仍存在一定的压力.  相似文献   

14.
利用长宽高为6m×15m×2m的隧道模型,进行了纵向排烟和高压细水雾灭火实验.通过对火源附近各测点温度的测试,分析了不同工作压力高压细水雾对柴油池火的控制效果,以及纵向排烟和细水雾不同的开启时间对控火效果的影响.结果表明:对于油面尺寸为250mm×200mm的柴油池火,在没有纵向排烟情况下,6MPa细水雾就可以有效扑灭柴油池火;在纵向排烟和高压细水雾同时开启的情况下,15MPa细水雾的控火和灭火效果最好;在高压细水雾启动之前30s优先开启纵向排烟的话,可以达到很好的灭火效果.  相似文献   

15.
该文对细水雾与固体木垛火相互作用问题进行小尺度模拟实验研究.利用热电偶、数码摄像机等测量了细水雾作用前后燃烧场的变化特征.结果表明:细水雾扑灭木垛燃烧的明火效果较好,但不能有效抑制阴燃现象,且喷雾气压、预燃时间和木垛结构形状对灭火过程有显著影响.在一定范围内,喷雾气压与灭火时间成反比关系;预燃时间与灭火时间成正比关系.  相似文献   

16.
针对航空货运锂离子电池的特殊环境,以及运输过程中热失控安全问题,自主设计搭建锂离子电池热失控实验平台,在康定机场(4290m,60kPa)高高原航空安全实验室开展实验。主要研究热失控过程中不同荷电量锂离子电池温度变化、氧消耗量、CO和CO2生成量以及开路电压变化情况。通过低压环境下锂离子电池热失控的研究,为航空货运锂离子电池的安全性提供了一定的理论支持。  相似文献   

17.
为提高细水雾抑制锂电池热失控效率,开展了含不同添加剂的细水雾抑制锂电池热失控的实验研究。通过对锂电池的温度变化趋势、降低到临界温度以下所用的时间、电池燃爆节数等参数对比分析,结果表明:加入添加剂后显著提高了细水雾抑制锂电池热失控的能力;三乙醇胺添加剂使细水雾的雾滴表面张力下降,迅速达到降低电池表面温度的效果,并且能有效抑制住锂电池热失控的传递,相比于碳酸氢钠、十二烷基苯磺酸钠两种添加剂,三乙醇胺细水雾抑制锂电池热失控的效率最佳。该研究为保证锂电池航空安全运输提供了理论支持和技术指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号