共查询到20条相似文献,搜索用时 109 毫秒
1.
蚁群与遗传算法融合的聚类算法研究 总被引:4,自引:0,他引:4
目的 通过将蚁群与遗传算法融合,以解决蚁群聚类算法参数众多且与问题域相关,搜索容易出现停滞现象等问题.方法 将主要影响蚁群聚类算法性能的5个参数作为遗传算法中的染色体进行编码.首先设计遗传算法的选择、交叉、变异算子,进而将用于聚类结果评价的F-measure函数作为适应度函数,通过多次迭代找出最优的参数组合.结果 在仿真实验中,获得了较好的聚类效果.结论 蚁群与遗传融合的聚类算法较蚁群聚类算法有更大的优势. 相似文献
2.
针对蚁群算法存在停滞现象及收敛速度慢的缺点,提出了一种融合遗传算法改进的蚁群算法,在蚁群算法中引入路径遗传运算.对蚂蚁发现的路径进行染色体编码,通过适应度函数对蚂蚁的路径做适应度评价,进行路径交叉和路径变异运算,设计了新的信息素更新策略.以对称TSP测试集为对象,将改进算法与现有算法进行测试比较.实验结果表明,改进后的算法具有优良的全局优化能力,有效防止了停滞现象. 相似文献
3.
遗传算法是一种借鉴生物界自然选择和自然遗传机制的随机化搜索方法,可直接对结构对象进行操作,但是如果兼顾收敛速度和解的品质两个指标,单纯的遗传算法未必表现出原理本身的优越性。针对上述问题,提出一种新的遗传蚁群融合算法,利用蚁群算法的正反馈机制,来提高遗传算法运行的速度和效率,从而更好更快的解决函数优化求解问题。 相似文献
4.
提出融合蚁群算法和遗传算法来求解矩形件排样问题.考虑到蚁群算法和遗传算法各自的优缺点,该融合算法前阶段采用遗传算法获得排样问题的部分优化解,把它作为蚁群算法的初始信息素分布,后阶段利用蚁群算法求得最优排样序列,最后求得最优排样图.计算实例表明:与单一遗传算法相比较,该融合算法可达到更好的排样效果. 相似文献
5.
我国大中型城市职住空间的错位带来城市交通的巨大压力,面对城市功能空间和公交站点客流分布的不断发展变化,以提高城市公共交通网络便捷程度和公交出行的时间效率为目标,融合遗传算法和蚁群算法建立公交线网优化模型,设计优化公交路径选择算法,为解决公交线网不断优化调整问题提供方法借鉴。 相似文献
6.
7.
基于蚁群算法的改进遗传算法 总被引:1,自引:0,他引:1
翟梅梅 《安徽理工大学学报(自然科学版)》2009,29(3):58-63
遗传算法具有快速全局搜索能力,但对于系统中的反馈信息却没有利用,往往导致无为的冗余迭代,求解效率低.根据这一缺陷提出一种将蚁群算法融合到遗传算法的新策略:为了弥补遗传算法中的变异算子变异过程中的盲目无原则性,将蚁群算法的正反馈思想引入到遗传算法中.利用蚁群算法信息素更新原则指导变异规则,有效地提高了算法的寻优效率,优化了解的质量.为了验证算法的有效性,对TSPLIB库中的两个公共实际事例eil51和gr202以及安徽省17个城市的数据进行了仿真实验,结果表明改进后的算法是有效的. 相似文献
8.
刘文亮 《科技情报开发与经济》2009,19(14)
为了更好地解决水库优化调度问题,将遗传算法和蚁群算法融合应用于水库调度,指出遗传蚁群混合算法的收敛率更高,具有更好的全局收敛性能,遗传蚁群混合算法在更少的迭代次数迭到全局最优解,具有更高的收敛速度. 相似文献
9.
针对传统遗传与蚁群融合算法在路径规划中出现的收敛慢、能耗高的问题,提出一种改进融合算法。改进基于启发函数和自适应挥发因子的蚁群优化算法,结合A*算法提出回溯策略优化死锁问题;优化遗传算法种群初始化模式,提出通信机制交叉,调整适应度函数及交叉变异因子;将蚁群算法得到的次优解放入遗传算法优化后的种群中,形成新种群进行路径规划,采用删除算子对输出路径进行优化。仿真结果表明,改进融合算法对比传统融合算法在简单地图中迭代与转弯次数上优化57%和75%;在复杂地图中迭代与转弯次数优化70%和18%,搜索效率有所提高,改进的融合算法有效。 相似文献
10.
针对蚁群算法容易出现停滞现象而不能对解空间进行全面搜索的问题,提出了一种蚁群-遗传融合的文本聚类算法.该算法将影响蚁群算法性能的4个参数作为遗传算法中的染色体进行编码,基于此又设计出相应的适应度函数以及选择交叉变异算子,通过多次迭代找出最优的参数组合,并将其应用到文本聚类问题上.经与经典的k均值聚类算法、基本的蚁群聚类算法的仿真比较,结果表明所提出算法的聚类效果更好,在3个测试集上的F度量值要比k均值聚类算法分别提高5.69%、48.60%、69.60%,所以更适合于处理较大规模的数据集. 相似文献
11.
为了能处理交通导航系统中的模糊信息,并且能快速的综合多种信息求解最优导航路径,将模糊逻辑推理技术与改进的蚁群算法相结合提出了一种新的算法——模糊蚁群混合优化算法。实验表明,该算法不仅能够处理导航系统中的各种模糊信息,并且能利用改进的蚁群算法快速求解最优导航路径。 相似文献
12.
通过引入免疫克隆算子提出1种新的蚁群算法,并应用于TSP问题求解。结果表明:算法具有较好性能。 相似文献
13.
蚂蚁算法是目前解决大规模复杂问题比较有效的算法。同时TSP问题是经典的NP-C问题,已被广泛应用于在VLSI芯片设计、网络路由和车辆选路等领域,对TSP问题的求解的突破意味着大量NPC问题的求解可以迎刃而解,因而有着重要的实际价值和理论意义。文章系统地介绍了TSP问题,并在此基础上对蚂蚁算法求解TSP问题做了相关探讨。实验结果表明,蚂蚁算法对参数的初始值也具有敏感性,对于一个好的初始值的确定,需要建立在大量试验的基础上。 相似文献
14.
对于网络业务,服务质量(QoS)包括传输的带宽、传送的时延、数据的丢包率等.通过使用蚁群算法的自组织能力自动搜寻得到备选路径集,结合遗传模拟退火算法(GSAA)对产生的这些备选路径进行选择、交叉、变异、模拟退火来产生的一个路由协议综合缩短网络的路径消耗以及提高网络传输的服务质量. 相似文献
15.
针对传统的对等网搜索方法的不足,分析了蚁群算法的优势,提出了一种基于蚁群算法的对等网搜索方法.对等网上发起结点收到查询请求后,执行消息路由搜索算法对目标结点进行搜索,在搜索过程中根据状态转移公式寻找下一跳路径.实验结果表明,基于蚁群的对等网搜索算法能够节省路由长度并且有较高的搜索准确率. 相似文献
16.
本文详细分析了各类蚁群算法及其参数,将这些算法结合立体仓库固定货架拣选路径问题,选取出适合实际情况的算法模块;根据算法特性提出了根据迭代次数自适应调整q0参数和使用精英策略更新信息素两项优化等策略并通过仿真试验证实其优化性。在分析基础之上提出新蚁群算法的数学模型,通过大量仿真试验,得证新算法可以在较短的时间内找到较优的拣选路径,应用到实际操作中极大提高了立体仓库的使用效率。 相似文献
17.
朱锦新 《盐城工学院学报(自然科学版)》2009,22(4):44-47,59
针对蚁群算法在解决车辆路径问题(VRP)上易陷入局部最优解的缺陷,首先利用加权K-means算法对客户进行区域划分,再利用蚁群算法对每个区域进行求解,实验结果表明方法具有良好的性能。 相似文献
18.
传统蚁群算法在求解中容易出现搜索时间长、收敛过早或停滞现象,为克服这些缺点,通过对蚁群算法进行选择策略、信息素更新等方面的改进,以加快算法的收敛速度,提高算法的搜索能力。再将改进后的蚁群算法引入物流运输车辆调度、综合车辆调度理论,对物流运输车辆的优化调度进行了探讨,对有时间窗车辆调度问题(VSPTW)探求新的求解方法,运用Matlab语言进行编程实现,应用实例对算法进行验证。实践证明,改进后的蚁群算法基本上克服了一般蚁群算法自身的不足,提高了算法的性能。 相似文献
19.
采用蚁群优化算法对3跨24层168杆件的钢架结构重量进行优化计算,并对此结构采用美国钢结构规范(ASCI)、英国钢结构规范(BC5990)、国标钢结构规范(GB50017)3种规范体系进行对比分析。分析结果表明,基于TSP模型的蚁群优化算法对钢框架结构优化设计具有很好的适用性,尤其是对复杂钢结构的优化设计具有更快更强的适用性。 相似文献
20.
提出了一种改进的群算法用于求解优化问题,首先建立N个低层子种群,用一定数量的蚂蚁在这N个解空间中先随机搜索,然后模拟蚂蚁寻食的方式通过信息素来指引搜索,得到N个结果后在用蚁群算法求解,并给出了具体的算法。 相似文献