首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Wang M  Gamo NJ  Yang Y  Jin LE  Wang XJ  Laubach M  Mazer JA  Lee D  Arnsten AF 《Nature》2011,476(7359):210-213
Many of the cognitive deficits of normal ageing (forgetfulness, distractibility, inflexibility and impaired executive functions) involve prefrontal cortex (PFC) dysfunction. The PFC guides behaviour and thought using working memory, which are essential functions in the information age. Many PFC neurons hold information in working memory through excitatory networks that can maintain persistent neuronal firing in the absence of external stimulation. This fragile process is highly dependent on the neurochemical environment. For example, elevated cyclic-AMP signalling reduces persistent firing by opening HCN and KCNQ potassium channels. It is not known if molecular changes associated with normal ageing alter the physiological properties of PFC neurons during working memory, as there have been no in vivo recordings, to our knowledge, from PFC neurons of aged monkeys. Here we characterize the first recordings of this kind, revealing a marked loss of PFC persistent firing with advancing age that can be rescued by restoring an optimal neurochemical environment. Recordings showed an age-related decline in the firing rate of DELAY neurons, whereas the firing of CUE neurons remained unchanged with age. The memory-related firing of aged DELAY neurons was partially restored to more youthful levels by inhibiting cAMP signalling, or by blocking HCN or KCNQ channels. These findings reveal the cellular basis of age-related cognitive decline in dorsolateral PFC, and demonstrate that physiological integrity can be rescued by addressing the molecular needs of PFC circuits.  相似文献   

2.
Fyhn M  Hafting T  Treves A  Moser MB  Moser EI 《Nature》2007,446(7132):190-194
A fundamental property of many associative memory networks is the ability to decorrelate overlapping input patterns before information is stored. In the hippocampus, this neuronal pattern separation is expressed as the tendency of ensembles of place cells to undergo extensive 'remapping' in response to changes in the sensory or motivational inputs to the hippocampus. Remapping is expressed under some conditions as a change of firing rates in the presence of a stable place code ('rate remapping'), and under other conditions as a complete reorganization of the hippocampal place code in which both place and rate of firing take statistically independent values ('global remapping'). Here we show that the nature of hippocampal remapping can be predicted by ensemble dynamics in place-selective grid cells in the medial entorhinal cortex, one synapse upstream of the hippocampus. Whereas rate remapping is associated with stable grid fields, global remapping is always accompanied by a coordinate shift in the firing vertices of the grid cells. Grid fields of co-localized medial entorhinal cortex cells move and rotate in concert during this realignment. In contrast to the multiple environment-specific representations coded by place cells in the hippocampus, local ensembles of grid cells thus maintain a constant spatial phase structure, allowing position to be represented and updated by the same translation mechanism in all environments encountered by the animal.  相似文献   

3.
Lever C  Wills T  Cacucci F  Burgess N  O'Keefe J 《Nature》2002,416(6876):90-94
The hippocampus is widely believed to be involved in the storage or consolidation of long-term memories. Several reports have shown short-term changes in single hippocampal unit activity during memory and plasticity experiments, but there has been no experimental demonstration of long-term persistent changes in neuronal activity in any region except primary cortical areas. Here we report that, in rats repeatedly exposed to two differently shaped environments, the hippocampal-place-cell representations of those environments gradually and incrementally diverge; this divergence is specific to environmental shape, occurs independently of explicit reward, persists for periods of at least one month, and transfers to new enclosures of the same shape. These results indicate that place cells may be a neural substrate for long-term incidental learning, and demonstrate the long-term stability of an experience-dependent firing pattern in the hippocampal formation.  相似文献   

4.
Laubach M  Wessberg J  Nicolelis MA 《Nature》2000,405(6786):567-571
When an animal learns to make movements in response to different stimuli, changes in activity in the motor cortex seem to accompany and underlie this learning. The precise nature of modifications in cortical motor areas during the initial stages of motor learning, however, is largely unknown. Here we address this issue by chronically recording from neuronal ensembles located in the rat motor cortex, throughout the period required for rats to learn a reaction-time task. Motor learning was demonstrated by a decrease in the variance of the rats' reaction times and an increase in the time the animals were able to wait for a trigger stimulus. These behavioural changes were correlated with a significant increase in our ability to predict the correct or incorrect outcome of single trials based on three measures of neuronal ensemble activity: average firing rate, temporal patterns of firing, and correlated firing. This increase in prediction indicates that an association between sensory cues and movement emerged in the motor cortex as the task was learned. Such modifications in cortical ensemble activity may be critical for the initial learning of motor tasks.  相似文献   

5.
Attractor dynamics of network UP states in the neocortex   总被引:17,自引:0,他引:17  
Cossart R  Aronov D  Yuste R 《Nature》2003,423(6937):283-288
The cerebral cortex receives input from lower brain regions, and its function is traditionally considered to be processing that input through successive stages to reach an appropriate output. However, the cortical circuit contains many interconnections, including those feeding back from higher centres, and is continuously active even in the absence of sensory inputs. Such spontaneous firing has a structure that reflects the coordinated activity of specific groups of neurons. Moreover, the membrane potential of cortical neurons fluctuates spontaneously between a resting (DOWN) and a depolarized (UP) state, which may also be coordinated. The elevated firing rate in the UP state follows sensory stimulation and provides a substrate for persistent activity, a network state that might mediate working memory. Using two-photon calcium imaging, we reconstructed the dynamics of spontaneous activity of up to 1,400 neurons in slices of mouse visual cortex. Here we report the occurrence of synchronized UP state transitions ('cortical flashes') that occur in spatially organized ensembles involving small numbers of neurons. Because of their stereotyped spatiotemporal dynamics, we conclude that network UP states are circuit attractors--emergent features of feedback neural networks that could implement memory states or solutions to computational problems.  相似文献   

6.
Spontaneous neuronal activity plays an important role in the development and plasticity of brain. To explore the developmental changes in the firing pattern of the neuronal networks in vitro, the hippocampal neurons were cultured on the multi-microelectrode array dish for over 14 weeks and the spontaneous activity was recorded. The results showed that random firing was observed in the 1st week and transformed into synchronized activity after two weeks, then tightly synchronized activity appeared in week 2 to 7 and finally the activities transformed into the random firing pattern. These results suggested three stages in the long-term development of neuronal network in vitro: the stage for connection, the stage of synchronized activity and the mature stage. Synchronized firing shown by spontaneous activity was an important phenomenon in high density cultured neuronal network and transformed patterns during development.  相似文献   

7.
利用水蛭心脏细胞的神经元膜电位的动力学方程,讨论外界刺激电流对簇状放电中锋电位数目的影响,发现外界刺激电流和非失活钾离子通道激活电位具有相同的作用,神经元的活动状态随着外界刺激电流的变化,可以在簇状放电、持续放电和无放电三种状态之间转换.神经元簇状放电时,刺激电流导致神经元膜电位的去极化程度越高,在一次簇状放电过程中产生的锋电位数也越多.  相似文献   

8.
Rosenkranz JA  Grace AA 《Nature》2002,417(6886):282-287
Pavlovian conditioning results when an innocuous stimulus, such as an odour, is paired with a behaviourally relevant stimulus, such as a foot-shock, so that eventually the former stimulus alone will elicit the behavioural response of the latter. The lateral nucleus of the amygdala (LAT) is necessary for the emotional memory formation in this paradigm. Enhanced neuronal firing in LAT to conditioned stimuli emerge in parallel with the behavioural changes and are dependent on local dopamine. To study the changes in neuronal excitability and synaptic drive that contribute to the pavlovian conditioning process, here we used in vivo intracellular recordings to examine LAT neurons during pavlovian conditioning in rats. We found that repeated pairings of an odour with a foot-shock resulted in enhanced post-synaptic potential (PSP) responses to the odour and increased neuronal excitability. However, a non-paired odour displayed PSP decrement. The dopamine antagonist haloperidol blocked the PSP enhancement and associated increased neuronal excitability, without reversing previous conditioning. These results demonstrate that conditioning and habituation processes produce opposite effects on LAT neurons and that dopamine is important in these events, consistent with its role in emotional memory formation.  相似文献   

9.
Sumbre G  Muto A  Baier H  Poo MM 《Nature》2008,456(7218):102-106
The ability to process temporal information is fundamental to sensory perception, cognitive processing and motor behaviour of all living organisms, from amoebae to humans. Neural circuit mechanisms based on neuronal and synaptic properties have been shown to process temporal information over the range of tens of microseconds to hundreds of milliseconds. How neural circuits process temporal information in the range of seconds to minutes is much less understood. Studies of working memory in monkeys and rats have shown that neurons in the prefrontal cortex, the parietal cortex and the thalamus exhibit ramping activities that linearly correlate with the lapse of time until the end of a specific time interval of several seconds that the animal is trained to memorize. Many organisms can also memorize the time interval of rhythmic sensory stimuli in the timescale of seconds and can coordinate motor behaviour accordingly, for example, by keeping the rhythm after exposure to the beat of music. Here we report a form of rhythmic activity among specific neuronal ensembles in the zebrafish optic tectum, which retains the memory of the time interval (in the order of seconds) of repetitive sensory stimuli for a duration of up to approximately 20 s. After repetitive visual conditioning stimulation (CS) of zebrafish larvae, we observed rhythmic post-CS activities among specific tectal neuronal ensembles, with a regular interval that closely matched the CS. Visuomotor behaviour of the zebrafish larvae also showed regular post-CS repetitions at the entrained time interval that correlated with rhythmic neuronal ensemble activities in the tectum. Thus, rhythmic activities among specific neuronal ensembles may act as an adjustable 'metronome' for time intervals in the order of seconds, and serve as a mechanism for the short-term perceptual memory of rhythmic sensory experience.  相似文献   

10.
Hafting T  Fyhn M  Bonnevie T  Moser MB  Moser EI 《Nature》2008,453(7199):1248-1252
Theta-phase precession in hippocampal place cells is one of the best-studied experimental models of temporal coding in the brain. Theta-phase precession is a change in spike timing in which the place cell fires at progressively earlier phases of the extracellular theta rhythm as the animal crosses the spatially restricted firing field of the neuron. Within individual theta cycles, this phase advance results in a compressed replication of the firing sequence of consecutively activated place cells along the animal's trajectory, at a timescale short enough to enable spike-time-dependent plasticity between neurons in different parts of the sequence. The neuronal circuitry required for phase precession has not yet been established. The fact that phase precession can be seen in hippocampal output stuctures such as the prefrontal cortex suggests either that efferent structures inherit the precession from the hippocampus or that it is generated locally in those structures. Here we show that phase precession is expressed independently of the hippocampus in spatially modulated grid cells in layer II of medial entorhinal cortex, one synapse upstream of the hippocampus. Phase precession is apparent in nearly all principal cells in layer II but only sparsely in layer III. The precession in layer II is not blocked by inactivation of the hippocampus, suggesting that the phase advance is generated in the grid cell network. The results point to possible mechanisms for grid formation and raise the possibility that hippocampal phase precession is inherited from entorhinal cortex.  相似文献   

11.
Kainate receptors are involved in synaptic plasticity   总被引:21,自引:0,他引:21  
The ability of synapses to modify their synaptic strength in response to activity is a fundamental property of the nervous system and may be an essential component of learning and memory. There are three classes of ionotropic glutamate receptor, namely NMDA (N-methyl-D-aspartate), AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid) and kainate receptors; critical roles in synaptic plasticity have been identified for two of these. Thus, at many synapses in the brain, transient activation of NMDA receptors leads to a persistent modification in the strength of synaptic transmission mediated by AMPA receptors. Here, to determine whether kainate receptors are involved in synaptic plasticity, we have used a new antagonist, LY382884 ((3S, 4aR, 6S, 8aR)-6-((4-carboxyphenyl)methyl-1,2,3,4,4a,5,6,7,8,8a-decahydro isoquinoline-3-carboxylic acid), which antagonizes kainate receptors at concentrations that do not affect AMPA or NMDA receptors. We find that LY382884 is a selective antagonist at neuronal kainate receptors containing the GluR5 subunit. It has no effect on long-term potentiation (LTP) that is dependent on NMDA receptors but prevents the induction of mossy fibre LTP, which is independent of NMDA receptors. Thus, kainate receptors can act as the induction trigger for long-term changes in synaptic transmission.  相似文献   

12.
Bala AD  Spitzer MW  Takahashi TT 《Nature》2003,424(6950):771-774
The owl can discriminate changes in the location of sound sources as small as 3 degrees and can aim its head to within 2 degrees of a source. A typical neuron in its midbrain space map has a spatial receptive field that spans 40 degrees--a width that is many times the behavioural threshold. Here we have quantitatively examined the relationship between neuronal activity and perceptual acuity in the auditory space map in the barn owl midbrain. By analysing changes in firing rate resulting from small changes of stimulus azimuth, we show that most neurons can reliably signal changes in source location that are smaller than the behavioural threshold. Each source is represented in the space map by a focus of activity in a population of neurons. Displacement of the source causes the pattern of activity in this population to change. We show that this change predicts the owl's ability to detect a change in source location.  相似文献   

13.
During vertebrate development, the specification of distinct cell types is thought to be controlled by inductive signals acting at different concentration thresholds. The degree of receptor activation in response to these signals is a known determinant of cell fate, but the later steps at which graded signals are converted into all-or-none distinctions in cell identity remain poorly resolved. In the ventral neural tube, motor neuron and interneuron generation depends on the graded activity of the signalling protein Sonic hedgehog (Shh). These neuronal subtypes derive from distinct progenitor cell populations that express the homeodomain proteins Nkx2.2 or Pax6 in response to graded Shh signalling. In mice lacking Pax6, progenitor cells generate neurons characteristic of exposure to greater Shh activity. However, Nkx2.2 expression expands dosally in Pax6 mutants, raising the possibility that Pax6 controls neuronal pattern indirectly. Here we provide evidence that Nkx2.2 has a primary role in ventral neuronal patterning. In Nkx2.2 mutants, Pax6 expression is unchanged but cells undergo a ventral-to-dorsal transformation in fate and generate motor neurons rather than interneurons. Thus, Nkx2.2 has an essential role in interpreting graded Shh signals and selecting neuronal identity.  相似文献   

14.
许多证据表明,正常衰老过程伴随着记忆力的衰退.但有些动物却不表现出这种年龄相关的记忆障碍.为了检测其中的分子机制,将24个月的老年大鼠按在水迷宫中的行为表现分成记忆损伤组和记忆未损伤组,分别取海马和内嗅皮层进行基因芯片检测.结果显示,在海马和内嗅皮层中分别有47和37个基因的表达发生了显著变化.但两个脑区的基因表达变化...  相似文献   

15.
Retrograde amnesia observed following hippocampal lesions in humans and animals is typically temporally graded, with recent memory being impaired while remote memories remain intact, indicating that the hippocampal formation has a time-limited role in memory storage. However, this claim remains controversial because studies involving hippocampal lesions tell us nothing about the contribution of the hippocampus to memory storage if this region was present at the time of memory retrieval. We therefore used non-invasive functional brain imaging using (14C)2-deoxyglucose uptake to examine how the brain circuitry underlying long-term memory storage is reorganized over time in an intact brain. Regional metabolic activity in the brain was mapped in mice tested at different times for retention of a spatial discrimination task. Here we report that increasing the retention interval from 5 days to 25 days resulted in both decreased hippocampal metabolic activity during retention testing and a loss of correlation between hippocampal metabolic activity and memory performance. Concomitantly, a recruitment of certain cortical areas was observed. These results indicate that there is a time-dependent reorganization of the neuronal circuitry underlying long-term memory storage, in which a transitory interaction between the hippocampal formation and the neocortex would mediate the establishment of long-lived cortical memory representations.  相似文献   

16.
Imagery neurons in the human brain   总被引:7,自引:0,他引:7  
Kreiman G  Koch C  Fried I 《Nature》2000,408(6810):357-361
  相似文献   

17.
Bursts are electrical spikes firing with a high frequency, which are the most important property in synaptic plasticity and information processing in the central nervous system. However, bursts are difficult to identify because bursting activities or patterns vary with physiological conditions or external stimuli. In this paper, a simple method automatically to detect bursts in spike trains is described. This method auto-adaptively sets a parameter (mean inter-spike interval) according to intrinsic properties of the detected burst spike trains, without any arbitrary choices or any operator judgment. When the mean value of several successive inter-spike intervals is not larger than the parameter, a burst is identified. By this method, bursts can be automatically extracted from different bursting patterns of cultured neurons on multi-electrode arrays, as accurately as by visual inspection. Furthermore, significant changes of burst variables caused by electrical stimulus have been found in spontaneous activity of neuronal network. These suggest that the mean inter-spike interval method is robust for detecting changes in burst patterns and characteristics induced by environmental alterations.  相似文献   

18.
S G Lisberger  T J Sejnowski 《Nature》1992,360(6400):159-161
Most models of neural networks have assumed that neurons process information on a timescale of milliseconds and that the long-term modification of synaptic strengths underlies learning and memory. But neurons also have cellular mechanisms that operate on a timescale of tens or hundreds of milliseconds, such as a gradual rise in firing rate in response to injection of constant current or a rapid rise followed by a slower adaptation. These dynamic properties of neuronal responses are mediated by ion channels that are subject to modulation. We demonstrate here how a neural network with recurrent feedback connections can convert long-term modulation of neural responses that occur over these intermediate timescales into changes in the amplitude of the steady output from the system. This general principle may be relevant to many feedback systems in the brain. Here it is applied to the vestibulo-ocular reflex, whose amplitude is subject to long-term adaptive modification by visual inputs. The model reconciles apparently contradictory data on the neural locus of the cellular mechanisms that mediate this simple form of learning and memory.  相似文献   

19.
采用近似熵(approximate entropy,ApEn)的新统计方法衡量神经元不同自发放电活动时间序列数据的规律性和复杂度,对多电极阵列上培养的海马神经元网络自发活动的复杂度进行研究.结果表明不同自发放电活动的近似熵动态变化曲线有明显差别.静息期时近似熵值范围1.0-1.2;典型爆发活动时近似熵值呈现迅速下降而后上升再下降小幅振荡(0.2-0.6);而伪爆发活动时近似熵值在0.2—0.7范围,沿平行时间轴的某一直线上下波动;连续发放锋电位时近似熵值在0.8-0.9范围;而随机单发锋电位时近似熵值0.6—0.8范围.以上分析结果说明近似熵动态变化曲线能够体现爆发活动和锋电位发放过程的规律性和复杂度变化,并可以有效地识别培养神经元网络自发的不同电生理信号,因而在神经元电信号分析中有着潜在的应用价值.  相似文献   

20.
Brain-machine interfaces (BMIs) translate neural activities of the brain into specific instructions that can be carried out by external devices. BMIs have the potential to restore or augment motor functions of paralyzed patients suffering from spinal cord damage. The neural activities have been used to predict the 2D or 3D movement trajectory of monkey’s arm or hand in many studies. However, there are few studies on decoding the wrist movement from neural activities in center-out paradigm. The present study developed an invasive BMI system with a monkey model using a 10×10-microelectrode array in the primary motor cortex. The monkey was trained to perform a two-dimensional forelimb wrist movement paradigm where neural activities and movement signals were simultaneous recorded. Results showed that neuronal firing rates highly correlated with forelimb wrist movement; > 70% (105/149) neurons exhibited specific firing changes during movement and > 36% (54/149) neurons were used to discriminate directional pairs. The neuronal firing rates were also used to predict the wrist moving directions and continuous trajectories of the forelimb wrist. The four directions could be classified with 96% accuracy using a support vector machine, and the correlation coefficients of trajectory prediction using a general regression neural network were above 0.8 for both horizontal and vertical directions. Results showed that this BMI system could predict monkey wrist movements in high accuracy through the use of neuronal firing information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号