首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
制备了β-半乳糖苷酶磁性交联酶聚体,优化了制备条件,并对其酶学性质进行了系统研究.实验结果表明,最优的制备条件为,4.2 mg Fe3O4磁性纳米颗粒,20 mg/m L的BSA 2m L,吸附时间为1.5 h,β-半乳糖苷酶酶液50μL,沉淀剂为异丙醇,体积比为1∶1,沉淀时间1h,戊二醛体积分数为0.125%,交联时间1 h,在此条件下得到的β-半乳糖苷酶M-CLEAs酶活保留率为58.67%.扫描电镜观察显示β-半乳糖苷酶磁性交联酶聚体呈多孔结构,比表面积大.与游离酶相比,β-半乳糖苷酶M-CLEAs具有更加宽泛的催化温度和p H范围,同时表现出较好的重复利用性.  相似文献   

2.
透性化细胞海藻糖合酶的制备及其性质研究   总被引:8,自引:1,他引:8  
研究了亚栖热菌CBS-01菌株细胞的渗透处理工艺,并对所得透性化细胞海藻糖合酶的性质进行了考察.结果表明:以2%的甲苯为渗透剂,对10%浓度的菌悬液,50℃渗透处理30~60 m in即得透性化细胞海藻糖合酶.该透性化细胞酶的最适反应pH为6.2~7.2,最适反应温度为50~65℃;50℃时,催化麦芽糖生成海藻糖的转化率为70%.  相似文献   

3.
通过β-葡萄糖苷酶催化壳聚糖和栀子苷两原料同时水解,同步两原料的水解产物氨基葡萄糖和京尼平发生缩聚反应制得栀子蓝色素.利用分光光度法测定栀子蓝色素的色价,并与市售栀子蓝色素的品质进行了比较.研究结果显示优化工艺参数为:栀子苷与壳聚糖的质量比为1∶2,酶与总物料质量比为1∶8,料液比(质量体积比)为1∶10,反应温度50℃,反应液p H4.8,反应时间30h.在此优化条件下得到栀子蓝溶液,经大孔树脂纯化后,栀子蓝色素色价达到96,比大部分报道及市售的栀子蓝色素色价高,该法简化了栀子蓝色素制备工艺,而且原料廉价易得,有利于工业化生产.  相似文献   

4.
采用壳聚糖铜固定化和交联酶聚集体的方法固定化漆酶.探索了固定化前后漆酶的最适温度、pH,热稳定性和金属离子对其活性的影响,交联漆酶聚集体制备的条件.结果为:游离漆酶的最适温度是20℃,最适pH是4.6;壳聚糖铜固定化漆酶的最适温度是25℃,最适pH是4.0;交联漆酶聚集体的最适温度是15℃,最适pH是3.6.固定化后漆酶的热稳定性提高,不同金属离子影响固定化漆酶的活性,其中K+的激活作用尤为明显.制备交联漆酶聚集体最适戊二醛浓度为1%,最适交联时间是2 h.  相似文献   

5.
以Cerrena sp. HYB07菌株所产漆酶为研究对象,制备磁性Fe_3O_4-壳聚糖固定漆酶.磁性壳聚糖微球固定化漆酶制备的最优条件为:磁性Fe_3O_4纳米颗粒0.4μg·mL~(-1)、戊二醛质量浓度4 mg·mL~(-1)、交联时间12 h、给酶量160 U·mL~(-1)、固定化时间8 h.在此条件下,漆酶固定化率为78.03%,固定化漆酶活力为97.19 U·g~(-1).酶学性质研究表明,固定化漆酶的最适反应pH值为3.0,最适反应温度为45℃.与游离酶相比,固定化漆酶的热稳定性有所提高.固定化漆酶用于蒽醌染料活性亮蓝脱色,具有良好的重复利用性,不仅染料脱色率优于游离酶,且在汞离子存在下也效果显著.  相似文献   

6.
为将发酵制备的液态己糖激酶制备成粉剂,应用于诊断试剂领域,对己糖激酶冻干保护剂进行了筛选优化;并对制得的己糖激酶干粉的酶学性质进行了研究。通过单因素试验、Plackett-Burman设计和最陡爬坡试验,以响应面分析确定其最优保护剂种类复配比例。结果表明:冻干保护剂选取蔗糖、乳糖和山梨醇效果最佳;且最优比为蔗糖4. 5%、乳糖2. 0%、山梨醇8. 0%,平均酶活保存率为78. 1%。己糖激酶干粉的最适反应温度为50℃;在45℃高温处理30 min后,仍具有60%的活力;最适反应p H为8. 0,在p H 6. 0~10. 0范围内具有较好的稳定性;为己糖激酶制剂在诊断试剂领域的应用奠定了基础。  相似文献   

7.
从红藻中筛选获得一株能产生明显液化现象并具有较高琼脂糖酶活力的菌株Ag-1,经生理生化实验和16S r DNA序列分析鉴定为弧菌属(Vibrio sp.).酶学性质研究表明,该酶的最适反应温度为50℃,40~50℃水浴保温1 h可保持68%以上的酶活力;最适反应p H值为8.0,在p H 7.0~8.0保温1 h可保持90%以上的酶活力,在p H 8.0~9.0保温1 h仍可保持70%以上的酶活力,具有较好的耐热性和耐碱性;且该酶对琼脂底物具有高度专一性;K+、Ca2+、Mg2+、Li+和Fe3+对琼脂糖酶活力具有激活作用,Mn2+、Zn2+和Cu2+对琼脂糖酶具有抑制作用.酶反应动力学实验结果表明,该酶的最适底物浓度为8 mg·m L-1,动力学参数Km为0.58 mg·m L-1,vmax为3.29 U·mg-1.  相似文献   

8.
酶的固定化是提高酶的稳定及降低使用成本的重要途径.通过制备聚乙烯醇(PVA)-海藻酸钠(SA)复合载体,对共固定化葡萄糖氧化酶(GOD)和过氧化氢酶(CAT)的条件进行了研究,优化了固定化酶制备工艺,研究了固定化酶性质.得出制备固定化酶最佳条件为:载体比例 PVA∶SA=9.0∶1.5,加酶量10 mg/mL,酶活之比CAT∶GOD=10∶1.固定化酶的最适反应温度为45℃,比游离酶提高了5℃,最适反应pH 没有发生变化,连续使用6次酶活保留60%.研究结果有一定的应用潜力.  相似文献   

9.
对银杏叶过氧化物酶热稳定性、最适pH值及海藻糖对酶热稳定性的保护作用和pH值的影响进行了初步研究.结果表明,用40℃和50℃分别处理30 min,过氧化物酶活性分别剩余78%和39%,在60,70,80℃下活性可分别维持27,18和3 min.银杏叶过氧化物酶最适pH值为6.4和9.2.加入海藻糖后酶活性略有降低(活性丧失约8%),但加热后海藻糖的保护优势得以显现,海藻糖浓度为0.14 mol/L时保护效果最好,而且不同温度处理下酶活的下降趋势均较对照组缓慢,尤其在50,60,70℃条件下,相比对照组高出12%~27%的活性,加热时间长短对海藻糖的保护效果无太大影响.经0.14 mol/L浓度的海藻糖处理后,酶活的最适pH值为6.6和9.4.  相似文献   

10.
通过单因素和正交实验对菌株IMBH-2固态发酵培养基优化;并对IMBH-2漆酶进行了酶学性质的初步研究。结果表明在固态培养基中添加蔗糖和有机氮源可以促进漆酶发酵。优化后的培养基为蔗糖2.5%(w/w),牛肉膏0.8%(w/w),KH_2PO_40.4%(w/w),Mg SO_4·7H_2O 0.15%(w/w),麦麸100 g,固液比1∶1.5。优化后发酵漆酶活力较优化前提高了3倍。漆酶的最适反应温度为40℃,最适p H为4.0,且在低pH下比较稳定。  相似文献   

11.
以壳聚糖改性高岭土为脱色剂,研究其对直接橙S的脱色性能。探讨了改性土的制备条件、脱色体系中各因素对脱色性能的影响。结果表明:壳聚糖与高岭土的质量比为1∶15,p H为0~3时制备改性土的脱色能力最强。当改性土用量为0. 6 g、反应温度为35℃、反应时间50 min、弱酸性条件下脱色率达到最佳。  相似文献   

12.
壳聚糖固定化β-葡萄糖苷酶酶学性质研究   总被引:3,自引:2,他引:1  
采用交联吸附法将β-葡萄糖苷酶固定在壳聚糖上,方法简便易行.固定化酶的最适反应温度为50℃,相比于游离酶上升了10℃,且固定化酶提高了游离酶的热稳定性.固定化酶最适pH值为6.0,与游离酶相比上升了1.0,更耐碱.固定化酶对化学试剂稳定性增强,贮藏稳定性有显著提高.固定化酶优化了游离酶的部分酶学性质,具有一定应用价值.  相似文献   

13.
微球形固定化α-葡萄糖苷酶的制备   总被引:3,自引:0,他引:3  
将粉末状壳聚糖制备成微球形多孔载体 ,采用吸附 -交联的方法将TGL固定化 .研究表明 ,制备微球形多孔壳聚糖载体的关键取决于壳聚糖原料的分子量分布、壳聚糖的稀酸溶液浓度以及凝结液的组成等因素 ;当壳聚糖的相对分子质量为 3.0× 10 5左右 ,壳聚糖溶液浓度为 2 .5% ,凝结液组成为 2mol/LNaOH∶4 0 %甲醛 =3∶2 (体积比 )或2mol/LNaOH∶甲醇 =3∶1(体积比 )时 ,可制得微球形多孔壳聚糖载体 .最佳固定化条件研究表明 ,对于脱乙酰度为 88%的壳聚糖载体 ,加酶量为 3× 10 5Unit/g时 ,在 pH 6.0条件下 ,室温吸附 8h ,然后用 2 .0 %的戊二醛在 4 5℃交联 9h ,可得到固定化酶的活力为2 .34 2× 10 5Unit/g ,酶活力回收率为 78.1% ,并具有较好的强度 .  相似文献   

14.
《河南科学》2017,(1):33-36
以活性白土、壳聚糖为原料,通过表面活性剂十六烷基三甲基溴化铵对活性白土进行化学改性,将改性后的活性白土与壳聚糖复合制备得目标产物—活性白土/壳聚糖复合物.通过红外光谱(IR)、热重(TG)、X-射线衍射(XRD)和透射电子显微镜(TEM)对所制得的复合物进行表征,探究复合物的结构、热稳定性能和形貌.十六烷基三甲基溴化铵(CTAB)改性后的活性白土的片层间距由1.831 nm增长到2.299 nm;通过单因素变量法研究活性白土与壳聚糖的适宜配比、吸附剂用量、吸附体系p H值、吸附时间等对吸附效率的影响.结果表明,活性白土与壳聚糖的适宜配比为10∶1;复合物用量为6.000 g,吸附时间为45 min,p H为7时为Pb~(2+)的适宜吸附条件,吸附率为90.21%;复合物用量为10.000 g,吸附时间为45 min,p H为9时为Cu~(2+)的最适吸附条件,吸附率为80.12%;复合物用量为8.000 g,吸附时间为60 min,p H为8时为Zn~(2+)的适宜吸附条件,吸附率为70.31%.  相似文献   

15.
开发简单、有效的纳米酶活性调控策略,尤其是在中性p H条件下有效地激活纳米酶的催化活性仍然是当前纳米酶传感所面临的重要挑战.文中以壳聚糖为稳定剂和还原剂,通过一锅法制备了壳聚糖包裹的金纳米颗粒(CS@Au NPs),采用TEM、XRD、EDS、XPS等手段对纳米颗粒的形貌、结构和组分进行了表征,同时将其应用于人血清中Hg~(2+)的测定.结果表明,Hg~(2+)可在中性条件下有效激活CS@AuNPs的类过氧化物酶催化活性,显著增强CS@Au NPs纳米酶对TMB的氧化能力.据此,可建立基于温度信号的Hg~(2+)光热传感即时检测新方法,检测限为9.4nmol·L~(-1).构建的纳米酶活性调控策略打破了纳米酶催化活性的p H限制,为纳米酶的生物传感分析应用提供了有益的探索.  相似文献   

16.
【目的】开发适用于海藻糖生产的新型海藻糖合成酶。【方法】通过反向PCR技术,从一株纤维微菌的基因组DNA中获知海藻糖合成酶基因完整ORF序列,进而克隆得到纤维微菌海藻糖合成酶基因(CCTreS),将其与表达载体pSE380构建重组质粒后转入大肠杆菌BL-21(DE3)中诱导表达,通过镍柱亲和层析纯化得到纯酶并进行酶学性质测定。【结果】从纤维微菌中克隆并在大肠杆菌中成功表达海藻糖合成酶基因(CCTreS)。经纯化获得的重组酶(CCTreS)在以麦芽糖为底物生成海藻糖时,最适反应pH值为7.0,最适反应温度为45℃,40℃保温1h仍具有80%以上的相对酶活力,在pH值5.5~8.5保存24h,相对酶活力仍保留80%以上。Cu~(2+)对其有明显抑制作用。【结论】该重组酶具有很好的热稳定性和pH稳定性,具有一定的研究价值和潜在的工业应用价值。  相似文献   

17.
黑曲霉胞外β-葡萄糖苷酶的纯化及酶学性质的研究   总被引:1,自引:0,他引:1  
利用硫酸铵盐析、Superdex 200凝胶柱层析等步骤,从黑曲霉发酵液中纯化得到两种β–葡萄糖苷酶蛋白,其相对分子质量分别为1.15×105和7.0×104左右,比活力分别为62.1,U/mg(相对分子质量约为1.15×105)和53.0,U/mg(相对分子质量约为7.0×104),纯化倍数分别为1.54和1.31,回收率分别为19.6%,和19.1%,β–葡萄糖苷酶最适水解p H为4.6,最适反应温度为50~55,℃.在p H 4.2~4.8、温度40~60,℃下均能保持稳定.Mn2+、Mg2+和K+对β–葡萄糖苷酶有不同程度的激活作用,而Ca2+、Fe3+、Zn2+、Cu2+和Fe2+会抑制β–葡萄糖苷酶的酶活,Na+和Ba2+对β–葡萄糖苷酶活力影响不明显.以p NPG为底物时,该酶的Km和vmax分别为2.33,mmol/L与3.14,mmol/(L·min).  相似文献   

18.
壳聚糖铜固定化漆酶研究   总被引:1,自引:0,他引:1  
用壳聚糖与CuSO2.5H2O溶液络合成的壳聚糖铜为载体,固定化白毒鹅膏菌胞外漆酶,测定了铜盐浓度、络合时间、固定化时缓冲液的pH值、固定化时间、给酶量对固定化酶性质的影响。实验得出固定化最佳条件是在20℃、pH7.0的磷酸缓冲液中,固定2个小时,这种条件下酶活保持率为50.2%。固定化酶的最适pH值4.0比游离酶的4.6偏酸;固定化酶的最适温度24℃。  相似文献   

19.
采用非特异性酶(商品纤维素酶、商品木聚糖酶、东方肉座菌EU7-22和黑曲霉BE-2来源酶)分别降解壳聚糖,探索其降解的最佳工艺条件.结果发现4种非特异性酶最适pH值为5.5~5.7,最佳反应温度为45~55℃,底物质量浓度不宜高于15 g·L~(-1);离子浓度对壳聚糖的酶解效率影响不大,可通过适当提高酶用量促进酶解.对比结果表明,通过东方肉座菌EU7-22可控发酵获得的非特异性酶能够在12 h内将壳聚糖降解为水溶性壳聚糖,效率远高于商品酶.  相似文献   

20.
采用明胶包埋、戊二醛交联相结合的方法制备固定化葡萄糖淀粉酶—葡萄糖异构酶双酶体系.该酶制备的最适条件是温度50℃pH值6.5.该酶反应的最适温度为50℃,最适pH为5.4,最适底物浓度为15%,热稳定性在50℃以下.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号