首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
S Kawamura  M Murakami 《Nature》1991,349(6308):420-423
In vertebrate photoreceptors, light reduces cyclic GMP concentration and closes cGMP-activated channels to induce a hyperpolarizing response. As Ca2+ can permeate the channels and the Na(+)-Ca2+ exchanger continuously extrudes Ca2+, closure of the channel results in a reduction of the inter-rod Ca2+ concentration. This is believed to be one of the mechanisms of light-adaptation produced by activation of guanylate cyclase. Effects of Ca2+ on the cGMP phosphodiesterase (PDE) have been reported, but their physiological significance has remained unclear. We have perfused the inside-out preparation of a frog rod outer segment (I/O ROS, originally termed truncated ROS, and find that Ca2+ in a physiological range regulates the light-activation of PDE. Therefore, PDE regulation by Ca2+ must be involved in light-adaptation in rods. The effect is mediated by a newly found protein which binds to disk membranes at high Ca2+ concentrations and prolongs PDE activation.  相似文献   

3.
4.
5.
R M Rapoport  M B Draznin  F Murad 《Nature》1983,306(5939):174-176
The action of some vascular smooth muscle relaxants depends on the presence of the endothelium. We have recently shown that relaxation may be mediated through the formation of cyclic GMP. The nitrovasodilators are another class of relaxants which exert their effects through the formation of cyclic GMP, although their relaxation is independent of the presence of the endothelium. Their relaxant properties seem to depend on free radical formation--specifically, the formation of nitric oxide. The NO-induced smooth muscle relaxation is proposed to occur through activation of guanylate cyclase and the formation of cyclic GMP. Protein phosphorylation is thought to be a common event in the pathway for many biological phenomena. Moreover, sodium nitroprusside and 8-bromo cyclic GMP induce similar patterns of protein phosphorylation in intact rat thoracic aorta. Here we report that the patterns of protein phosphorylation induced by the endothelium-dependent vasodilators and nitrovasodilators were identical. Incorporation of 32P into myosin light chain was decreased by both classes of agents. Removal of the endothelium abolished the changes in phosphorylation with the endothelium-dependent vasodilator (acetylcholine), but not those with the nitrovasodilator (sodium nitroprusside). These results suggest that endothelium-dependent vasodilators and nitrovasodilators induce relaxation through cyclic GMP-dependent protein phosphorylation and dephosphorylation of myosin light chain.  相似文献   

6.
Lee JH  Koh H  Kim M  Kim Y  Lee SY  Karess RE  Lee SH  Shong M  Kim JM  Kim J  Chung J 《Nature》2007,447(7147):1017-1020
AMP-activated protein kinase (AMPK, also known as SNF1A) has been primarily studied as a metabolic regulator that is activated in response to energy deprivation. Although there is relatively ample information on the biochemical characteristics of AMPK, not enough data exist on the in vivo function of the kinase. Here, using the Drosophila model system, we generated the first animal model with no AMPK activity and discovered physiological functions of the kinase. Surprisingly, AMPK-null mutants were lethal with severe abnormalities in cell polarity and mitosis, similar to those of lkb1-null mutants. Constitutive activation of AMPK restored many of the phenotypes of lkb1-null mutants, suggesting that AMPK mediates the polarity- and mitosis-controlling functions of the LKB1 serine/threonine kinase. Interestingly, the regulatory site of non-muscle myosin regulatory light chain (MRLC; also known as MLC2) was directly phosphorylated by AMPK. Moreover, the phosphomimetic mutant of MRLC rescued the AMPK-null defects in cell polarity and mitosis, suggesting MRLC is a critical downstream target of AMPK. Furthermore, the activation of AMPK by energy deprivation was sufficient to cause dramatic changes in cell shape, inducing complete polarization and brush border formation in the human LS174T cell line, through the phosphorylation of MRLC. Taken together, our results demonstrate that AMPK has highly conserved roles across metazoan species not only in the control of metabolism, but also in the regulation of cellular structures.  相似文献   

7.
8.
9.
10.
A Bahinski  A C Nairn  P Greengard  D C Gadsby 《Nature》1989,340(6236):718-721
In heart cells, cyclic AMP-dependent protein kinase (PKA) regulates calcium- and potassium-ion current by phosphorylating the ion channels or closely associated regulatory proteins. We report here that isoprenaline induced large chloride-ion currents in voltage-clamped, internally-dialysed myocytes from guinea-pig ventricles. The Cl- current could be activated by intracellular dialysis with cAMP or the catalytic subunit of PKA, indicating regulation by phosphorylation. In approximately symmetrical solutions of high Cl- concentration, the macroscopic cardiac Cl- current showed little rectification, unlike the single-channel current in PKA-regulated Cl- channels of airway epithelial cells. But, like epithelial Cl- -channel currents, the cardiac Cl- current was sensitive to the distilbene,4,4'-dinitrostilbene-2,2'-disulphonic acid (DNDS). In the absence of kinase activation, cardiac sarcolemmal Cl- conductance was negligible. During beta-adrenergic stimulation of the heart, this novel Cl- conductance should accelerate action-potential repolarization and so protect impulse propagation in the face of the possibly arrhythmogenic increases in heart rate and in calcium entry into the cells.  相似文献   

11.
12.
13.
14.
Prevention of natural motoneurone cell death by dibutyryl cyclic GMP   总被引:3,自引:0,他引:3  
C L Weill  D P Greene 《Nature》1984,308(5958):452-454
Natural neuronal cell death is a well-described developmental phenomenon common to many nerve centres in a variety of animal species. Neuronal survival has been shown to depend on the presence and size of the available target tissue and it has been suggested that neuronal survival is dependent on successful competition for either a limited number of synaptic sites or a limited amount of trophic factor(s). In the lateral motor column of the lumbar spinal cord in the chick embryo, the period of axon elongation and innervation of the periphery has been shown to precede that of natural motoneurone cell death. While muscle contractile activity appears to regulate the extent of motoneurone death, to date the intracellular molecular events that initiate and regulate the developmental process of natural neuronal cell death or, more importantly, neuronal survival are unknown. Our earlier studies suggested that either contact or association between spinal cord processes and muscle cells during neuromuscular junction formation in vivo leads to an increase in cyclic GMP in whole spinal cord. We now show that treatment of chick embryos with the membrane-permeable cyclic GMP analogue, dibutyryl cyclic GMP during the period of natural motoneurone cell death prevents greater than 58% of natural motoneurone cell death in the lumbar lateral motor column.  相似文献   

15.
16.
17.
M Egan  T Flotte  S Afione  R Solow  P L Zeitlin  B J Carter  W B Guggino 《Nature》1992,358(6387):581-584
Cystic fibrosis (CF) is a lethal genetic disease resulting in a reduced Cl- permeability, increased mucous sulphation, increased Na+ absorption and defective acidification of lysosomal vesicles. The CF gene encodes a protein (the cystic fibrosis transmembrane conductance regulator, CFTR) that can function as a low-conductance Cl- channel with a linear current-voltage relationship whose regulation is defective in CF patients. Larger conductance, outwardly rectifying Cl- channels are also defective in CF and fail to activate when exposed either to cyclic AMP-dependent protein kinase A or to protein kinase C. The role of the outwardly rectifying Cl- channel in CF has been questioned. We report here that expression of recombinant CF genes using adeno-associated virus vectors in CF bronchial epithelial cells corrects defective Cl- secretion, that it induces the appearance of small, linear conductance Cl- channels, and restores protein kinase A activation of outwardly rectifying Cl- channels. These results re-establish an involvement of outwardly rectifying Cl- channels in CF and suggest that CFTR regulates more than one conductance pathway in airway tissues.  相似文献   

18.
P S Rudland  D Gospodarowicz  W Seifert 《Nature》1974,250(5469):741-2, 773-4
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号