首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
S Kawamura  M Murakami 《Nature》1991,349(6308):420-423
In vertebrate photoreceptors, light reduces cyclic GMP concentration and closes cGMP-activated channels to induce a hyperpolarizing response. As Ca2+ can permeate the channels and the Na(+)-Ca2+ exchanger continuously extrudes Ca2+, closure of the channel results in a reduction of the inter-rod Ca2+ concentration. This is believed to be one of the mechanisms of light-adaptation produced by activation of guanylate cyclase. Effects of Ca2+ on the cGMP phosphodiesterase (PDE) have been reported, but their physiological significance has remained unclear. We have perfused the inside-out preparation of a frog rod outer segment (I/O ROS, originally termed truncated ROS, and find that Ca2+ in a physiological range regulates the light-activation of PDE. Therefore, PDE regulation by Ca2+ must be involved in light-adaptation in rods. The effect is mediated by a newly found protein which binds to disk membranes at high Ca2+ concentrations and prolongs PDE activation.  相似文献   

2.
Vertebrate rod photoreceptors hyperpolarize when illuminated, due to the closing of cation-selective channels in the plasma membrane. The mechanism controlling the opening and closing of these channels is still unclear, however. Both 3',5'-cyclic GMP and Ca2+ ions have been proposed as intracellular messengers for coupling the light activation of the photopigment rhodopsin to channel activity and thus modulating light-sensitive conductance. We have now studied the effects of possible conductance modulators on excised 'inside-out' patches from the plasma membrane of the rod outer segment (ROS), and have found that cyclic GMP acting from the inner side of the membrane markedly increases the cationic conductance of such patches (EC50 30 microM cyclic GMP) in a reversible manner, while Ca2+ is ineffective. The cyclic GMP-induced conductance increase occurs in the absence of nucleoside triphosphates and, hence, is not mediated by protein phosphorylation, but seems rather to result from a direct action of cyclic GMP on the membrane. The effect of cyclic GMP is highly specific; cyclic AMP and 2',3'-cyclic GMP are completely ineffective when applied in millimolar concentrations. We were unable to recognize discrete current steps that might represent single-channel openings and closings modulated by cyclic GMP. Analysis of membrane current noise shows the elementary event to be 3 fA with 110 mM Na+ on both sides of the membrane at a membrane potential of -30 mV. If the initial event is assumed to be the closure of a single cyclic GMP-sensitive channel, this value corresponds to a single-channel conductance of 100 fS. It seems probable that the cyclic GMP-sensitive conductance is responsible for the generation of the rod photoresponse in vivo.  相似文献   

3.
D Matesic  P A Liebman 《Nature》1987,326(6113):600-603
Light-modulated cytoplasmic cGMP simultaneously controls plasma membrane Na+ conductance in visual excitation and Ca2+ entry into rods by direct interaction with the cation channel. Cytoplasmic Ca2+ in turn may set operating points and contribute to the dynamics of several enzymes that regulate cGMP levels in the dark, recovery from excitation and receptor adaptation or down regulation. Similar channels may couple electrical activity to internal nucleotide metabolism in other tissues. We here report the identification, partial purification and behaviour after reconstitution of a protein of relative molecular mass 39,000 (Mr 39K) present in both disk and plasma membranes from bovine rod outer segments that mediates these cGMP-dependent cation fluxes. Its cGMP agonist specificity, kinetic cooperativity, ionic selectivity, membrane density and other features closely match the properties of the visual cGMP-dependent conductance inferred from electrophysiological measurements.  相似文献   

4.
Control of Ca2+ in rod outer segment disks by light and cyclic GMP   总被引:4,自引:0,他引:4  
J S George  W A Hagins 《Nature》1983,303(5915):344-348
Photons absorbed in vertebrate rods and cones probably cause electrochemical changes at the photoreceptor plasma membrane by changing the cytoplasmic concentration of a diffusible transmitter substance, reducing the Na+ current flowing into the outer segment of the cell in the dark, to produce the observed membrane hyperpolarization that is the initial excitatory response. Cyclic GMP has been proposed as the transmitter because a light-activated cyclic GMP phosphodiesterase (PDE) has been found in rod disk membranes and because intracellularly injected cyclic GMP reduces rod membrane potentials. Free Ca2+ has also been proposed because increasing external [Ca2+] quickly and reversibly reduces the dark current and divalent cationophores increase the Ca2+ sensitivity. Ca2+ efflux from rod outer segments (ROS) of intact retinas occurs simultaneously with light responses. Vesicles prepared from ROS disk membranes become more permeable on illumination, releasing trapped ions or molecules, but intact outer segment disks have not previously been found to store sufficient Ca2+ in darkness and to release enough in light to meet the theoretical requirements for control of the dark current by varying cytoplasmic Ca2+ (refs 14-18). We now report experiments that show the required Ca2+ storage and release from rod disk membranes suspended in media containing high-energy phosphate esters and electrolytes approximating the cytoplasmic composition of live rod cells. Cyclic GMP stimulates Ca2+ uptake by ROS disks in such media.  相似文献   

5.
R H Scott  A C Dolphin 《Nature》1987,330(6150):760-762
The activation of a guanine nucleotide binding (G) protein is an essential step in coupling certain receptors to the inhibition of voltage-activated calcium channels. We have previously observed that analogues of GTP potentiate the effect of receptor agonists and inhibit calcium currents in cultured dorsal root ganglion (DRG) neurones. A residual sustained 'L-type' component of the calcium channel current is resistant to inhibition by internal guanosine 5'-O-3-thiotriphosphate (GTP-gamma-S). Because calcium channel antagonists such as D600, nifedipine and diltiazem inhibit L currents, we examined their effect on GTP-gamma-S-modified currents. These compounds all produced a rapid and very marked potentiation of calcium channel currents in the presence of internal GTP-gamma-S and this effect was prevented by pertussis toxin which ADP ribosylates the G proteins Gi/Go (for review see ref. 10). We suggest that this potentiation indicates that activated G protein can interact with the calcium channel, and that this enhances the action of calcium channel ligands at their agonist sites on the channel in its resting state. These results represent the first electrophysiological evidence that guanine nucleotides are able to influence cellular responses to calcium channel ligands.  相似文献   

6.
M D Arshavsky VYuBownds 《Nature》1992,357(6377):416-417
The photoreceptor G protein, transducin, is one of the class of heterotrimeric G proteins that mediates between membrane receptors and intracellular enzymes or ion channels. Light-activated rhodopsin catalyses the exchange of GDP for GTP on multiple transducin molecules. Activated transducin then stimulates cyclic GMP phosphodiesterase by releasing an inhibitory action of the phosphodiesterase gamma-subunits. This leads to a decrease in cGMP levels in the rod, and closure of plasma membrane cationic channels gated by cGMP. In this and other systems, turn-off of the response requires the GTP bound to G protein to be hydrolysed by an intrinsic GTPase activity. Here we report that the interaction of transducin with cGMP phosphodiesterase, specifically with its gamma-subunits, accelerates GTPase activity by several fold. Thus the gamma-subunits of the phosphodiesterase serve a function analogous to the GTPase-activating proteins that regulate the class of small GTP-binding proteins. The acceleration can be partially suppressed by cGMP, most probably through the non-catalytic cGMP-binding sites of phosphodiesterase alpha and beta-subunits. This cGMP regulation may function in light-adaptation of the photo-response as a negative feedback that decreases the lifetime of activated cGMP phosphodiesterase as light causes decreases in cytoplasmic cGMP.  相似文献   

7.
Cyclic GMP increases photocurrent and light sensitivity of retinal cones   总被引:5,自引:0,他引:5  
W H Cobbs  A E Barkdoll  E N Pugh 《Nature》1985,317(6032):64-66
Like retinal rods, cone photoreceptors contain cyclic GMP and light-activated phosphodiesterase. The cGMP phosphodiesterase cascade is thought to mediate phototransduction in rods. Biochemical assays of nucleotide content in cone-dominant retinas, however, have failed to demonstrate light-induced changes in cGMP. Changes in cyclic AMP following light exposure have been reported, leading to the suggestion that in cone phototransduction cAMP assumes a role analogous to that played by cGMP in rods. Cyclic GMP introduced from tight-seal pipettes into isolated cones of the larval tiger salamander, Ambystoma tigrinum, rapidly increases light-modulated membrane current more than 10-fold. In cones, as in rods, cGMP also causes an approximately 10-fold increase in photocurrent duration and a 5- to 10-fold increase in light-sensitivity. Cyclic AMP has no effect on cone photocurrents under the same conditions. Because cGMP has similar effects on photocurrent magnitude and kinetics in both rods and cones, we conclude that cGMP plays corresponding roles in transduction in both vertebrate photoreceptor classes.  相似文献   

8.
S Nawy  C E Jahr 《Nature》1990,346(6281):269-271
Depolarizing bipolar cells (DBCs) of the retina are the only neurons in the vertebrate central nervous system known to be hyperpolarized by the neurotransmitter glutamate. Both glutamate and its analogue L-2-amino-4-phosphonobutyrate (APB) hyperpolarize DBCs by decreasing membrane conductance. Furthermore, glutamate responses in DBCs slowly decrease during whole-cell recording, suggesting that the response involves a second messenger system. Here we report that intracellular cyclic GMP or GTP activates a membrane conductance that is suppressed by APB, resulting in an enhanced APB response. In the presence of GTP-gamma-S, APB causes an irreversible suppression of the conductance. Inhibitors of G-protein activation or phosphodiesterase activity decrease the APB response. Thus, the DBC glutamate receptor seems to close ion channels by increasing the rate of cGMP hydrolysis by a G protein-mediated process that is strikingly similar to light transduction in photoreceptors.  相似文献   

9.
Johnson JP  Zagotta WN 《Nature》2001,412(6850):917-921
Cyclic nucleotide-gated (CNG) channels are crucial components of visual, olfactory and gustatory signalling pathways. They open in response to direct binding of intracellular cyclic nucleotides and thus contribute to cellular control of both the membrane potential and intracellular Ca2+ levels. Cytosolic Ni2+ potentiates the rod channel (CNG1) response to cyclic nucleotides and inhibits the olfactory channel (CNG2) response. Modulation is due to coordination of Ni2+ by channel-specific histidines in the C-linker, between the S6 transmembrane segment and the cyclic nucleotide-binding domain. Here we report, using a histidine scan of the initial C-linker of the CNG1 channel, stripes of sites producing Ni2+ potentiation or Ni2+ inhibition, separated by 50 degrees on an alpha-helix. These results suggest a model for channel gating where rotation of the post-S6 region around the channel's central axis realigns the Ni2+-coordinating residues of multiple subunits. This rotation probably initiates movement of the S6 and pore opening.  相似文献   

10.
Cyclic GMP-sensitive conductance in outer segment membrane of catfish cones   总被引:3,自引:0,他引:3  
L Haynes  K W Yau 《Nature》1985,317(6032):61-64
A cyclic GMP-sensitive conductance has recently been observed with patch-clamp recording in excised inside-out patches of plasma membrane from frog and toad rod outer segments. This conductance has properties suggesting that it is probably the light-sensitive conductance involved in visual transduction. We now report a similar conductance in the outer segment membrane of catfish cones. Cyclic GMP showed positive cooperativity in opening this conductance, with a Hill coefficient of 1.6-3.0 and a half-saturating cGMP concentration of 35-70 microM. Cyclic AMP at 1 mM, or changing Ca concentration (in the presence of Mg), had little effect on the conductance. In physiological solutions the cGMP-induced current had a reversal potential near +10 mV; the current amplitude increased roughly exponentially with membrane potential in both depolarizing and hyperpolarizing directions. Our results suggest that cGMP is also the internal transmitter for phototransduction in cones.  相似文献   

11.
Signalling by intracellular second messengers such as cyclic nucleotides and Ca2+ is known to regulate attractive and repulsive guidance of axons by extracellular factors. However, the mechanism of interaction among these second messengers in determining the polarity of the guidance response is largely unknown. Here, we report that the ratio of cyclic AMP to cyclic GMP activities sets the polarity of netrin-1-induced axon guidance: high ratios favour attraction, whereas low ratios favour repulsion. Whole-cell recordings of Ca2+ currents at Xenopus spinal neuron growth cones indicate that cyclic nucleotide signalling directly modulates the activity of L-type Ca2+ channels (LCCs) in axonal growth cones. Furthermore, cGMP signalling activated by an arachidonate 12-lipoxygenase metabolite suppresses LCC activity triggered by netrin-1, and is required for growth-cone repulsion mediated by the DCC-UNC5 receptor complex. By linking cAMP and cGMP signalling and modulation of Ca2+ channel activity in growth cones, these findings delineate an early membrane-associated event responsible for signal transduction during bi-directional axon guidance.  相似文献   

12.
Shi N  Ye S  Alam A  Chen L  Jiang Y 《Nature》2006,440(7083):570-574
Ion selectivity is one of the basic properties that define an ion channel. Most tetrameric cation channels, which include the K+, Ca2+, Na+ and cyclic nucleotide-gated channels, probably share a similar overall architecture in their ion-conduction pore, but the structural details that determine ion selection are different. Although K+ channel selectivity has been well studied from a structural perspective, little is known about the structure of other cation channels. Here we present crystal structures of the NaK channel from Bacillus cereus, a non-selective tetrameric cation channel, in its Na+- and K+-bound states at 2.4 A and 2.8 A resolution, respectively. The NaK channel shares high sequence homology and a similar overall structure with the bacterial KcsA K+ channel, but its selectivity filter adopts a different architecture. Unlike a K+ channel selectivity filter, which contains four equivalent K+-binding sites, the selectivity filter of the NaK channel preserves the two cation-binding sites equivalent to sites 3 and 4 of a K+ channel, whereas the region corresponding to sites 1 and 2 of a K+ channel becomes a vestibule in which ions can diffuse but not bind specifically. Functional analysis using an 86Rb flux assay shows that the NaK channel can conduct both Na+ and K+ ions. We conclude that the sequence of the NaK selectivity filter resembles that of a cyclic nucleotide-gated channel and its structure may represent that of a cyclic nucleotide-gated channel pore.  相似文献   

13.
Reddy MM  Light MJ  Quinton PM 《Nature》1999,402(6759):301-304
It is increasingly being recognized that cells coordinate the activity of separate ion channels that allow electrolytes into the cell. However, a perplexing problem in channel regulation has arisen in the fatal genetic disease cystic fibrosis, which results from the loss of a specific Cl- channel (the CFTR channel) in epithelial cell membranes. Although this defect clearly inhibits the absorption of Na+ in sweat glands, it is widely accepted that Na+ absorption is abnormally elevated in defective airways in cystic fibrosis. The only frequently cited explanation for this hypertransport is that the activity of an epithelial Na+ channel (ENaC) is inversely related to the activity of the CFTR Cl- channel. However, we report here that, in freshly isolated normal sweat ducts, ENaC activity is dependent on, and increases with, CFTR activity. Surprisingly, we also find that the primary defect in Cl- permeability in cystic fibrosis is accompanied secondarily by a Na+ conductance in this tissue that cannot be activated. Thus, reduced salt absorption in cystic fibrosis is due not only to poor Cl- conductance but also to poor Na+ conductance.  相似文献   

14.
T M Vuong  M Chabre  L Stryer 《Nature》1984,311(5987):659-661
Cyclic GMP has been implicated as a messenger molecule involved in visual transduction. Photoexcited rhodopsin (R*) binds to a multisubunit membrane protein called transducin (T) and stimulates the exchange of a bound GDP molecule for GTP. This leads to the release of the alpha-subunit of T with bound GTP (T alpha-GTP), which activates a cyclic GMP phosphodiesterase. The question arises as to whether the hydrolysis of cyclic GMP that results from activation of the phosphodiesterase is sufficiently rapid to be involved in visual excitation, which occurs on a time scale of approximately 2 s in the single-photon limit. Previous studies have suggested that the cyclic GMP phosphodiesterase is activated in less than 100 ms at moderate light levels. We report here light scattering studies of magnetically orientated frog rod outer segments which show that a molecule of R* catalyses the activation of a molecule of T in about 1 ms. Thus, hundreds of molecules can be activated within the response time of vision in the single-photon limit, and the formation of T alpha-GTP is fast enough for it to be a key step in visual transduction.  相似文献   

15.
Rapid gating and anion permeability of an intracellular aquaporin   总被引:25,自引:0,他引:25  
Yasui M  Hazama A  Kwon TH  Nielsen S  Guggino WB  Agre P 《Nature》1999,402(6758):184-187
Aquaporin (AQP) water-channel proteins are freely permeated by water but not by ions or charged solutes. Although mammalian aquaporins were believed to be located in plasma membranes, rat AQP6 is restricted to intracellular vesicles in renal epithelia. Here we show that AQP6 is functionally distinct from other known aquaporins. When expressed in Xenopus laevis oocytes, AQP6 exhibits low basal water permeability; however, when treated with the known water channel inhibitor, Hg2+, the water permeability of AQP6 oocytes rapidly rises up to tenfold and is accompanied by ion conductance. AQP6 colocalizes with H+-ATPase in intracellular vesicles of acid-secreting alpha-intercalated cells in renal collecting duct. At pH less than 5.5, anion conductance is rapidly and reversibly activated in AQP6 oocytes. Site-directed mutation of lysine to glutamate at position 72 in the cytoplasmic mouth of the pore changes the cation/anion selectivity, but leaves low pH activation intact. Our results demonstrate unusual biophysical properties of an aquaporin, and indicate that anion-channel function may now be explored in a protein with known structure.  相似文献   

16.
In the vascular system, endothelium-derived relaxing factor (EDRF) is the name of the local hormone released from endothelial cells in response to vasodilators such as acetylcholine, bradykinin and histamine. It diffuses into underlying smooth muscle where it causes relaxation by activating guanylate cyclase, so producing a rise in cyclic GMP levels. It has been known for many years that in the central nervous system (CNS) the excitatory neurotransmitter glutamate can elicit large increases in cGMP levels, particularly in the cerebellum where the turnover rate of cGMP is low. Recent evidence indicates that cell-cell interactions are involved in this response. We report here that by acting on NMDA (N-methyl-D-aspartate) receptors on cerebellar cells, glutamate induces the release of a diffusible messenger with strikingly similar properties to EDRF. This messenger is released in a Ca2+-dependent manner and its activity accounts for the cGMP responses that take place following NMDA receptor activation. In the CNS, EDRF may link activation of postsynaptic NMDA receptors to functional modifications in neighbouring presynaptic terminals and glial cells.  相似文献   

17.
Effects of protein kinase C activators on cardiac Ca2+ channels   总被引:4,自引:0,他引:4  
A E Lacerda  D Rampe  A M Brown 《Nature》1988,335(6187):249-251
Phorbol esters have marked effects on voltage-dependent Ca2+ channels. Inhibitory and stimulatory effects on cardiac Ca2+ channels have been attributed in both cases to activation of protein kinase C. We show that the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate stimulates dihydropyridine-sensitive 45Ca2+ influx in primary cultures of neonatal rat ventricular myocytes within 5 s, but that after a 20-min pre-incubation period the phorbol ester markedly inhibits 45Ca2+ influx. The sequence of stimulation followed by inhibition is confirmed in cell-attached patch clamp recordings of single Ca2+ channel currents. The stimulatory effect is faster at 0 mV than at -40 mV, leading to the novel conclusion that the rate of protein kinase C activation is modulated by the state of the Ca2+ channel.  相似文献   

18.
H C Hartzell  R Fischmeister 《Nature》1986,323(6085):273-275
The slow inward Ca2+ current, ICa, is fundamental in the initiation of cardiac contraction and neurohormonal regulation of cardiac function. It is increased by beta-adrenergic agonists, which stimulate synthesis of cyclic AMP (cAMP) and cAMP-dependent phosphorylation. The neurotransmitter acetylcholine reduces ICa by an unknown mechanism. There is strong evidence that acetylcholine reduces ICa by decreasing adenylate cyclase activity, but cGMP has also been implicated as ACh stimulates cGMP accumulation and activates cGMP-dependent protein kinase. Application of cGMP decreases contractile force, decreases Ca flux, shortens the duration of action potentials and inhibits Ca-dependent action potentials. Other studies, however, have concluded that cGMP levels do not correlate with contractile force and that cGMP has no effect on ICa. We have therefore examined the effects of intracellular perfusion of cGMP on ICa using isolated, voltage-clamped cells from frog ventricle. We find that cGMP has negligible effects on basal ICa, but greatly decreases the ICa that had been elevated by beta-adrenergic agonists or by intracellular perfusion with cAMP. The decrease of ICa is mediated by cAMP hydrolysis via a cGMP-stimulated cyclic nucleotide phosphodiesterase.  相似文献   

19.
M S Chang  D G Lowe  M Lewis  R Hellmiss  E Chen  D V Goeddel 《Nature》1989,341(6237):68-72
Alpha atrial natriuretic peptide (alpha-ANP) and brain natriuretic peptide are homologous polypeptide hormones involved in the regulation of fluid and electrolyte homeostasis. These two natriuretic peptides apparently share common receptors and stimulate the intracellular production of cyclic GMP as a second messenger. Molecular cloning has defined two types of natriuretic peptide receptors: the ANP-C receptor of relative molecular mass (Mr) 60-70,000 (60-70 K), which is not coupled to cGMP production and may function in the clearance of ANP and the ANP-A receptor of Mr 120-140 K, which is a membrane form of guanylate cyclase in which ligand binding to the extracellular domain activates the cytoplasmic domain of the enzyme. Here we report the cloning and expression of a second human natriuretic peptide-receptor guanylate cyclase, the ANP-B receptor. The ANP-B receptor is preferentially activated by porcine brain natriuretic peptide rather than human alpha-ANP, whereas the ANP-A receptor responds similarly to both natriuretic peptides. These observations may have important implications for our understanding of the central and peripheral control of cardiovascular homeostasis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号