共查询到3条相似文献,搜索用时 0 毫秒
1.
Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change. 相似文献
2.
The objective of this study is to discuss the potential impact of a global warming on various aspects of human health. Changes in heat-related mortality are estimated for four countries: the United States, Canada, the People's Republic of China and Egypt. In addition, the potential confounding impact of increased air pollution is considered. Finally, a framework to analyze two vector-borne diseases, onchocerciasis and malaria, which may spread if temperatures increase, is discussed. Our findings suggest that heat-related mortality is estimated to rise significantly in all four countries if the earth warms, with the greatest impacts in China and Egypt. The most sensitive areas are those with intense but irregular heat waves. In the United States, air pollution does not appear to impact daily mortality significantly when severe weather is present, although it seems to have a slight influence when weather conditions are not stressful. 相似文献
3.
Cities are not only major contributors to global climate change but also stand at the forefront of climate change impact. Quantifying and assessing the risk potentially induced by climate change has great significance for cities to undertake positive climate adaptation and risk prevention. However, most of the previous studies focus on global, national or regional dimensions, only a few have attempted to examine climate change risk at an urban scale and even less in the case of a recent literature review. As a result, a quantitative assessment of climate change risk for cities remains highly challenging. To fill this gap, the article makes a critical review of the recent literature on urban-scale climate change risk assessment, and classifies them into four major categories of studies which jointly constitute a stepwise modelling chain from global climate change towards urban-scale risk assessment. On this basis, the study summarizes the updated research progresses and discusses the major challenges to be overcome for the seamless coupling of climate simulation between different scales, the reproduction of compound climate events, the incorporation of non-market and long-lasting impacts and the representation of risk transmission insides or beyond a city. Furthermore, future directions to advance quantitative assessment of urban-scale climate change risk are highlighted, with fresh insights into improving study methodology, enriching knowledge of climate change impact on city, enhancing abundance and accessibility to data, and exploring the best practice to provide city-specific climate risk service. 相似文献