共查询到18条相似文献,搜索用时 69 毫秒
1.
利用有效集求解的SVM策略,采用SOR方法求解相应的子问题,使得改进算法能有效处理大规模非线性可分的问题,证明了改进算法的有限终止性。提出了可将此改进算法应用到增量学习SVM中。 相似文献
2.
本文介绍了目前流行的机器学习方法——支持向量机,详细论述了目前主要的支持向量机的训练算法,分析了它们各自的优缺点。最后对支持向量机训练算法今后的研究提出一些设想。 相似文献
3.
支持向量机训练及分类算法研究 总被引:2,自引:0,他引:2
支持向量机(SVM)是在统计学习理论基础上发展起来的一种新的数据挖掘方法,已广泛应用于模式识别与回归分析等领域。针对一些主要的SVM训练算法,比较它们的特点,阐述其中最有代表性的序列最小优化(SMO)算法及其多种改进算法,还讨论一些典型的支持向量机多分类算法及支持向量机多标注算法。最后,指出亟待解决的一些问题。 相似文献
4.
支持向量机(SVM)是一种基于统计学习理论的机器学习方法,由于其优越的学习性能,已经成为当前模式识别、数据挖掘、大数据处理等机器学习领域的研究热点.查阅相关同类文章,发现其中对SVM理论中公式,如距离函数d、拉格朗日函数L(w,b,α)、二次凸优化函数f(x)等的来龙去脉缺少细致的阐述.本文对SVM理论中典型的线性最优二分类问题的求解进行了完整的推导,并给出了对岩屑岩性分类识别的结果,也为今后的非线性多类模式分解作出铺垫. 相似文献
5.
支持向量机是一种新型通用的机器学习方法,已成为数据挖掘的一种强有力的工具.通过研究线性和非线性支持向量机的模型,给出若干常用的训练算法. 相似文献
6.
介绍了支持向量机的数学模型,重点论述了两种比较典型的分解算法,即SVMlight和SMO,并对这两种算法的优点和缺点进行了分析和总结。 相似文献
7.
从降低时间和空间复杂度的角度出发,针对支持向量机的增量学习问题展开了研究,描述并比较了目前研究与应用较多的几种支持向量机增量学习算法,提出了一种基于壳向量的支持向量机渐进式增量学习算法,仿真实验结果表明:该算法在保证良好的分类精度的前提下,提高了学习效率. 相似文献
8.
最初出现的支持向量机理论是基于2类线性可分问题的.针对线性可分情况,研究表明线性硬间隔分类机的对偶问题与凸壳问题(平分最近点法)是等价的,线性硬间隔分类机的最大间隔与凸壳问题的2个最近点的距离相等:针对非线性可分情况,研究表明线性软间隔分类机的对偶问题与缩小的凸壳问题(推广的平分最近点法)是等价的,线性软间隔分类机的最大间隔与缩小的凸壳问题的2个最近点的距离相等.对支持向量机分类问题给出了直观解释. 相似文献
9.
支持向量训练算法研究 总被引:2,自引:2,他引:2
支持向量机(support vector machine,SVM)是在统计学习理论基础上发展起来的一种新的数据挖掘方法,并已广泛应用于模式识别与回归分析。针对一些主要的SVM训练方法,比较了它们的优缺点并重点阐述了其中最有代表性的序贯最小优化(SM0)算法及其多种改进算法,最后指出了进一步研究和应用亟待解决的一些问题。 相似文献
10.
支持向量机(Support Vector Machine,简称SVM)是一种有效分类方法.不同特征选取算法对分类器影响不同,结合支持向量机特点,提出了一种基于最大间隔的支持向量机特征选取算法.利用该算法,对Iris测试数据集进行了特征选取并仿真,实验结果表明,该算法不但能够有效去除噪音数据,而且提高了分类器推广与泛化能力. 相似文献
11.
基于改进克隆选择算法的最小二乘支持向量机 总被引:1,自引:0,他引:1
针对最小二乘支持向量机的参数选取问题,引入了克隆选择算法,提出了一种基于改进克隆选择算法的最小二乘支持向量机。同时根据最小二乘支持向量机的学习能力和泛化能力,在克隆选择算法的目标函数中加入两者的动态调节机制,这样改进的克隆选择算法在寻优过程中能够准确、快速地搜索到最小二乘支持向量机的最优参数。将本文模型用于乙烯裂解炉裂解深度值的学习和预测,经仿真实验表明:该预测模型的训练速度快,预测精度高。 相似文献
12.
13.
本文在仔细分析特征选择思想的基础上,将特征选择过程嵌入到学习机里面,提出了一种基于改进支持向量机的特征选择算法(Feature selection via Modified Support Vector Machines),该方法通过对特征的权重进行排序来实现特征选择.利用可以将特征选择过程和学习过程有机地统一起来,实验表明,与其它方法比较,该方法能够达到比较好的效果. 相似文献
14.
A new algorithm named kernel bisecting k-means and sample removal(KBK-SR) is proposed as sampling preprocessing for support vector machine(SVM) training to improve the efficiency.The proposed algorithm tends to quickly produce balanced clusters of similar sizes in the kernel feature space,which makes it efficient and effective for reducing training samples.Theoretical analysis and experimental results on three UCI real data benchmarks both show that,with very short sampling time,the proposed algorithm drama... 相似文献
15.
多类SVM分类算法的研究 总被引:3,自引:0,他引:3
支持向量机(Support Vector Machine,SVM)是上世纪九十年代提出的一种基于小样本的新的统计学习方法,较好地解决了非线性、高维数、局部极小点等实际问题.文中分析了SVM基础理论并总结了目前存在的基于支持向量机的主要分类方法,包括"一对多"方法、"一对一"方法、决策有向无环图方法、基于二又树的多类分类方法和其它方法,并对各自的优缺点及性能做了比较. 相似文献
16.
基于粗糙集与支持向量机的分类算法 总被引:3,自引:1,他引:3
针对高维大样本环境下支持向量机训练算法面临界的耗时增大与维数灾问题,将序列最小优化算法(SMO)与粗糙集(RS)的数据处理功能相结合,提出一种新的基于粗糙集与支持向量机的分类算法RS.SMO.该算法依据属性的重要性对数据集作属性约简,用粗糙边界集法生成类边界集作为SMO的训练子集,使训练集比原始训练集的维数与规模都有一定程度的减少,可构造出具有较好时空性能的算法.实验结果表明,RS-SMO算法能实现结构风险最小化,且性能优于SMO算法. 相似文献
17.
构造了融合粗糙集与球形支持向量机的多分类识别模型,提出了基于相对距离的球形支持向量机多分类识别算法。首先,通过粗糙集对样本集进行属性约简;然后,对约简后的样本集运用球形支持向量机进行训练,对于未知样本,按照未知样本到各类球心相对距离的大小进行分类,将未知样本归入相对距离较小的一类中去;最后,仿真结果证明:该方法可以有效地消除冗余属性,降低支持向量机的样本输入维数,提高了泛化能力。 相似文献
18.
许小明 《上饶师范学院学报》2009,29(3):85-89
讨论了把支持向量机的方法用于人脸识别.采用SVM方法进行人脸识别研究,将人脸识别这一典型的多分类问题构造成适合SVM处理的二分类问题,克服了传统svM方法在解决多分类问题上的一些缺陷支持向量机能有效地解决过学习问题,具有良好的推广性能和较好的分类精确性.介绍了支持向量机方法用于人脸识别的主要处理流程. 相似文献