首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
研究了一类非定常的非线性Schro¨dinger方程iux+utt+εuxt+f(|u|2)u=0(ε1,x∈R,0≤t≤T)的周期初值问题.分别构造了该问题的一类无条件稳定的半离散的谱格式、全离散的谱格式和拟谱格式,利用非线性函数的有界延拓法与能量估计法得到了格式的误差估计,并证明了上述格式关于一致模的收敛性与稳定性  相似文献   

3.
研究了更一般的非线性Klein-Gordon方程utt-uxx=f(u)的周期初边值问题,构造了此问题的半离散和全离散的Fouier谱格式,利用非线性函数的有办延拓法,讨论了这两种谱格式的误差估计,证明了Fourier谱格式的收敛性,得到其收敛精度,从而避免了较难的先验估计,放宽了非线性项条件。  相似文献   

4.
本文讨论了一类具有波动算子的非线性Schroedinger方程的周期初值问题,构造了半离散和全离散的Fourier谱格式,利用有界延拓法,证明了格式的收敛性与稳定性,并给出了误差估计,为该模型的数值分析提供了理论基础和一个有效的算法。  相似文献   

5.
研究了一类非定常的非线性Schr(o)dinger方程iux+utt+εuxt+f(|u|2)u=0(ε1,x∈R,0≤t≤T)的周期初值问题.分别构造了该问题的一类无条件稳定的半离散的谱格式、全离散的谱格式和拟谱格式,利用非线性函数的有界延拓法与能量估计法得到了格式的误差估计,并证明了上述格式关于一致模的收敛性与稳定性.  相似文献   

6.
给出了一类描述Bose-Einstein凝聚的非线性Schroedinger方程的驻波解的存在性。  相似文献   

7.
研究了更一般的非线性Klein-Gordon方程utt-uxx=f(u)的周期初边值问题.构造了此问题的半离散和全离散的Fourier谱格式,利用非线性函数的有界延拓法,讨论了这两种谱格式的误差估计,证明了Fourier谱格式的收敛性,得到其收敛精度,从而避免了较难的先验估计,放宽了非线性项条件.  相似文献   

8.
研究了一类非线性Schroedinger方程初边值问题在n维空间中整体解的存在唯一性,给出了要求最低的条件,推广了已有的某些结果。  相似文献   

9.
李建珍  任华国 《河南科学》2000,18(2):111-116
考虑具调和振子的非线性Schroedinger方程的Cauchy问题。采用Galerkin方法证明了整体强解的存在性,使用能量计方法证明了整体强解的唯一性。  相似文献   

10.
一类非线性Schrodinger方程整体解   总被引:2,自引:0,他引:2  
梅茗 《江西科学》1993,11(1):7-12
  相似文献   

11.
考察了一类非线性双曲Schroedinger方程周期初值问题,构造了半离散、全离散谱格式及拟谱格式,证明格式的收敛性与稳定性,最后计算了像孤立子解.  相似文献   

12.
考察一类非线性Cahn-Hiliard方程的谱方法,构靠了一类有条件稳定的半离散和全离散格式,采用先验估计和Sobolev不等式,证明有了其格式的收敛性与稳定性。  相似文献   

13.
本文用半群理论和一致先验估计的方法研究了一类非线性Schrodinger方程初边值问题的整体行为和渐近性。  相似文献   

14.
具有波动算子的非线性Schrodinger方程的谱方法   总被引:2,自引:0,他引:2  
本文讨论了一类具有波动算子的非线性Schrodinger方程的周期初值问题,构造了半离散和全离散的Fourier谱格式,利用有界延拓法,证明了格式的收敛性与稳定性,并给出了误差估计,为该模型的数值分析提供了理论基础和一个有效的算法.  相似文献   

15.
研究了用差分法求解自治的发展方程时稳定性和收敛性这两个基本概念之间的联系,利用计算时间的有限性和紧致性,在可解集为开集的条件下,得出方程解的邻近也可解的结论.当近似方法同时具备收敛性和稳定性时,方程解必然具备逐点Lipschitz条件.方程解的邻近如果可解并具备逐点Lipschitz条件,则差分法收敛必有稳定界存在,从而差分格式收敛性保证其稳定性,因此可以放弃线性这一重要条件.  相似文献   

16.
本文考察一类非线性SchrSdinger方程的谱方法与拟谱方法,构造了一类无条件稳定的全离散格式,证明了L~2模的收敛性与稳定性。该全离散格式为线性方程组,它既具备Crank-Nicolson格式(非线性方程组)的稳定性,又具备相同的精度,容易在计算机上实现。所以,较Crank-Nic01son格式优越。最后讨论了一致模的收敛性与稳定性。  相似文献   

17.
Boussinesq方程组解的存在唯一性和Fourier谱方法的误差估计   总被引:1,自引:0,他引:1  
引入Fourier谱方法逼近来解决Boussinesq方程周期初值问题局部广义解和古典解的存在唯一性问题,在给出了Fourier谱方法逼近解的估计后,利用紧至于和性原理得到了Boussinesq方程组周期初值问题局部广义解和古典解和存在性和唯一属于是一步加强初值条件的光滑性,得到了古典解的存在性,最后,给出了Fouricr谱性,进一步加强初值条件的光滑性,得出了古典解的存在性,最后,给出了Four  相似文献   

18.
研究如下方程的初值问题iut=Δu-|x|2u+q(|u|2)u-(ia)/(2)u, x∈Rn, t>0,u(x,0)=u0(x), x∈Rn,得出当初值u0和q满足一定的条件时,该方程不存在整体解.  相似文献   

19.
本文讨论了一类具有波动算子的非线性 Schr dinger方程的周期初值问题 ,构造了半离散和全离散的 Fourier谱格式 ,利用有界延拓法 ,证明了格式的收敛性与稳定性 ,并给出了误差估计 ,为该模型的数值分析提供了理论基础和一个有效的算法  相似文献   

20.
利用拓展的Riccati方程映射法,研究一个新形式的非线性薛定谔方程,并得到一类非线性薛定谔方程的精确解析解,包括孤子解、周期波解和变量分离解.这种方法在寻找其他非线性发展方程的新精确解方面具有普遍意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号