首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 104 毫秒
1.
研究了 Sasakian 空间形式中的子流形是全测地子流形的几个充分条件,得出相应的拼挤常数,改进了前人的结果,即设 Mn 是 Sasakian 空间形式 M2n+ 1 (c)中的可积的紧致极小子流形,当(1) K> n- 28n (c+ 3);(2) Q> n2 - 2n- 14n (c+ 3);(3) σ2 ≤n+ 16 (c+ 3)三个条件之一满足时, M 是全测地子流形  相似文献   

2.
利用活动标架法研究Sasakian空间形式的积分子流形的内蕴刚性,得到了优于Blairs’的一个Pinching条件,并用不同于Maeda’s的方法证明了Maeda的一个Pinching定理。  相似文献   

3.
令N是n+p维局部对称空间,1/2〈δ≤KN≤1,M为n维紧极小子流形,其截面曲率处处不小于K,S为第二基本形式的模长平方,则下成立∫MS「8/3(1-δ)(p-1)(n-1)^1/2+n(1-δ)+(p-1)/p S-nK」≥0。  相似文献   

4.
拟常曲率空间的紧致极小子流形   总被引:1,自引:0,他引:1  
  相似文献   

5.
设M^n是常曲率空间S^n p(C)的紧致极小子流形,Q是M^n上每点各方向Ricci曲率的下确界,σ为M^n的第二基本形式长度的平方。利用M^n的内在量Q和σ给出了常曲率空间S^n p(C)中紧致极小子流形是全池地子流形的几个充分条件。  相似文献   

6.
7.
设N^m+p是截面曲率KN满足1/2〈δ≤KN≤1的n+p维局部对称空间完备的δ-Pinching黎曼流形,M^n是N^m+p中的紧致极小子流形。讨论了这类子流形关于Ricci曲率的pinching问题。  相似文献   

8.
设M ̄n是2n+1维Sasakian空间型M ̄(2n+1)(C)中n维极小的积分子流形.本文给出了M ̄n为全测地的一些Pinching条件.  相似文献   

9.
利用陈不等式研究了理想子流形的一些相关的几何问题,将理想子流形的概念推广到广义Sasakian空间形式中,并证明广义Sasakian空间形式中的一类特殊理想子流形是其极小子流形,推广了Sasakian空间形式中的相关结论.  相似文献   

10.
给出 QC 空间紧极小子流形全测地的截面曲率和数量曲率的 Pinching条件,推广了前人在常曲率空间的相应结果。即:k>(p—1)/((2p—1)或k>n/[2(n+1)]时 M=S_((1))~n;R>n(n—1)—n/[2—(1/p)]时,M=S_((1))~n.  相似文献   

11.
研究了常曲率空间Sn+p(c)中的紧致子流形Mn,得出了Mn是全测地或全脐子流形的几个充分条件,即设Mn是常曲率空间形式Sn+p(c)中的紧致极小子流形,当1)σ1是常曲率空间形式Sn+p(c)中的具有平行平均曲率向量的紧致子流形,当1)σc+H22两个条件之一满足时,M是全脐子流形.  相似文献   

12.
利用Lagrange乘数法得到一个不等式估计,从而改进了沈一兵文中有关单位球面S~(n-p)中的n维紧致极小子流形的Pinching定理.  相似文献   

13.
对推广的Sasakian空间形式,即广义Sasakian空间形式中的反不变ξ┵-子流形作了一些研究,并得到一个关于scalar曲率与平均曲率算子的平方间的一个不等式 ||H||2≥2(n 2)/n2(n-1)t-n 2/nf1.  相似文献   

14.
15.
研究了局部对称的黎曼流形N^n+p中的紧致极小子流形M^n,推广了这类子流形中已有的结果,得到了与子流形的第二基本形式模长的平方口有关的Pinching定理。  相似文献   

16.
设 M2n 1(c)是2n 1维常φ 截面曲率c的Sasaki空间形式,Mn是 M2n 1(c)(c>-3)的n维紧致极小积分子流形、S.Maeda(TensorNS,1981,35:200~204.)证明了:当n 5时,若M的Ricci曲率满足Ric(Mn)>(n-2-14,n)·c 3则Mn是全测地的.讨论了n=4的情形,得到类似的结果.  相似文献   

17.
用活动标架法研究拟常全纯截面曲率空间中的全实极小子流形,得到了关于第二基本形式模长‖B‖的Smions型积分不等式.  相似文献   

18.
研究空间形式中紧致极小子流形,得到这类子流形为全测地子流形的充分条件:设Mn(n>2)是空间形式Nn+p(C)中紧致极小等距浸入子流形,如果下列条件之一成立:(i)R>(n2-n+1-2/n)c-2/nQ,(ii)K>3/4n[n(n-1)c-R],则Mn是Nn+p(c)的全测地子流形.  相似文献   

19.
研究了拟常曲率黎曼流形中的紧致极小子流形问题,给出了M^n是全测地子流形的截面曲率不等式估计,推广了S.T.au研究的结果,并导出了有关数量曲率和Ricc曲率的结论。  相似文献   

20.
设Nn p是截面曲率KN满足1/2<δ≤KN≤1的n P维局部对称完备的δ-Pinching黎曼流形.Mn是Nn p的紧致极小子流形.讨论了这类子流形关于第二基本形式模长平方σ及Ricci曲率有关的Pinching定理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号