首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
正规化Maurer-Cartan形式的基是寻找Whitham-Broer-Kaup系统的解的不变性的重要工具,由于Whitham-Broer-Kaup系统的非线性和经典活动标架法的局限性,该系统的正规化Maurer-Cartan形式的基尚未被给出。基于等变活动标架理论,运用Maple软件,给出了求解Whitham-Broer-Kaup系统正规化Maurer-Cartan形式的基的一种有效方法。提供的方法克服了经典活动标架法的局限性,只用到无穷小决定方程组和截面正规化的选取,甚至没有用到活动标架、微分不变量、不变微分算子的显式表达式,是一种非常高效的算法。结果可用于研究Whitham-Broer-Kaup系统的解的不变性,并将有助于进一步研究海洋、大气、非线性动力学等领域中运动的规律和趋势。  相似文献   

2.
微分方程包含线性和非线性微分方程。微分方程研究的主体是非线性微分方程,特别是非线性偏微分方程。很多意义重大的自然科学和工程技术问题都可归结为非线性偏微分方程的研究。另外,随着研究的深入,有些原来可用线性偏微分方程近似处理的问题,也必须考虑非线性的影响。从传统的观点来看,求偏微分方程的精确解是十分困难的。经过几十年的研究和探索,人们已经找到了一些构造精确解的方法。借助于Cole-Hope变换,积分变换法和拟解的方法,获得Burgers方程,(2+1)维Burgers方程,(2+1)维高阶Burgers方程的新的精确解。这种方法可以解决一系列的偏微分方程。  相似文献   

3.
介绍了寻求非线性偏微分方程精确解的方法——复方法,用该方法研究了一类辅助微分方程的亚纯解,并将所得结果运用于寻求相关的非线性偏微分方程的精确解,得到Vakhnenko-Parkes方程和Dodd-Bullough-Mikhailov方程的精确解。  相似文献   

4.
提出一种改进的用以求解非线性偏微分方程新类型精确解的双曲正切函数求解算法,并给出其符号计算方法和实现步骤的归纳描述.基于该新方法,研究了非线性系统中经典Kadomtsev-Petviashvili(KP)方程新的孤立波形式精确解构造.结果表明,该方法可以有效求解非线性偏微分方程新的形式复杂的精确解.  相似文献   

5.
基于指数函数展开法构造非线性差分微分方程新的精确解   总被引:1,自引:1,他引:0  
以双曲正切函数展开法、Jacobi椭圆函数展开法和试探函数法为基础,给出指数函数展开法,借助符号计算系统Mathematica,构造了一般格子方程和(2+1)维Toda格子方程等非线性差分微分方程新的精确解,其中包括精确孤立波解.该方法在构造非线性差分微分方程精确解领域具有普遍意义.  相似文献   

6.
为研究(3+1)维非线性波动方程的精确解,通过利用不变集方法,得到了(3+1)维非线性波动方程的一些新精确解。该方法也可以用来求解其他非线性偏微分方程。  相似文献   

7.
通过适当的变量变换将某些非线性耦合的偏微分方程(PDE3)转化成单个的非线性偏微分方程,再利用文献[2]中所用的方法得到了这些非线性耦合的偏微分方程一些新的显示精确解.这些精确解不包含在[1]中获得的那些解之中,从而推广了文献[1]的某些结果.此方法也可用来求长水波近似方程的精确解.  相似文献   

8.
利用动力系统分岔理论,研究了一维复Ginzburg-Landau(CGL)方程的分岔及其精确行波解.通过行波变换将非线性发展方程转化为二维平面动力系统,利用定性分析的方法,得到了该系统在不同参数条件下的所有分岔相图.借助非线性偏微分方程的行波解与对应的常微分方程的轨道的关系,通过行波系统的首次积分,获得了一维CGL方程的所有有界行波解的显示参数表达式.  相似文献   

9.
在齐次平衡法和辅助方程法的基础上,引入两种函数变换,把二阶线性偏微分方程转化为二阶常系数线性常微分方程,并通过讨论常微分方程的解来构造一些非线性发展方程的精确解.借助符号计算系统Math-ematica,构造了非线性长波方程新的复合型精确解,验证了方法的有效性.  相似文献   

10.
借助于数学计算软件Maple及有理展开这一思路,将Riccati方程有理展开法进一步推广来构造非线性偏微分方程的新精确解.应用该方法研究了(2+1)维Burgers方程,并成功地获得了该方程的新的形式的解,从而得出该方法在求解非线性偏微分方程新精确解中的有效性和可靠性.  相似文献   

11.
利用Lie对称约化非线性发展方程   总被引:1,自引:0,他引:1  
利用群论中关于曲面及方程的不变性理论,结合偏微分方程的不变解的求解思路和方法,借助Lie对称约化非线性偏微分方程为常微分方程,为求得非线性发展方程的精确解提供重要的思想方法和步骤.  相似文献   

12.
找到Rosenau方程的显式精确解十分困难,研究方法常采用数值离散求解技术.首先,采用李群分析法给出了Rosenau方程的对称群、约化常微分方程和群不变解;其次,构造了一种精确求解非线性偏微分方程的exp(-φ(ξ))展式法,利用此方法找到了Rosenau方程的显式行波解,分析了解的动力学行为;最后,所获得的显式行波解既证明了Rosenau方程显式精确解的存在性,又可用于验证数值解的精度、检验数值离散方案的优劣,为工程领域的实际应用提供理论依据和参考.  相似文献   

13.
求非线性偏微分方程的精确解非常重要,Burgers方程是一个模拟冲击波的传播和反射的非线性偏微分方程,它在非线性偏微分方程中具有重要地位。给出了Burgers方程的全新的精确解,具体的方法如下:首先,对方程进行行波变换;然后,分别利用双曲函数法和改进的双曲函数法给定它不同形式的拟解,其中拟解的项数由齐次平衡法确定,拟解中的函数满足Riccati方程;再将拟解代入行波变换后的方程,得到一个方程组;最后,借助计算机代数系统Mathematica解此方程组,确定拟解,即为全新的精确解。这种方法求得的Burgers方程的精确解,包含了一些文献的结果,也修正了某些文献的结论。这种方法可以用来求一系列偏微分方程的精确解。  相似文献   

14.
研究在非线性光学等领域出现的Chen-Lee-Liu(CLL)方程的精确解.通过对CLL方程的行波约化导出一个具有高次非线性项的非线性常微分方程.为了解该非线性常微分方程,给出一个新的辅助微分方程及其精确解.借助该辅助微分方程及其精确解,并根据齐次平衡原则,得到CLL方程的包络孤立波解和包络正弦波解.所用方法可应用到其它类似方程的求解.  相似文献   

15.
研究了描述阿尔芬波的导数Schr(o)dinger方程(DNLS方程)的精确解,通过对DNLS方程的行波约化导出了一个具有高次非线性项的非线性常微分方程,为了解该非线性常微分方程,给出了一个新的辅助微分方程及其精确解.借助该辅助微分方程及其精确解,并根据齐次平衡原则,得到了DNLS方程的包络孤立波解和包络正弦波解.所用方法可应用到其它类似方程的求解.  相似文献   

16.
应用动力系统分支理论对一类耦合非线性微分方程进行研究,给出在各种参数条件下系统的相图分支及可能存在的孤立行波解、扭波解、反扭波解的精确公式.  相似文献   

17.
孤立子理论的迅速发展,使得众多学者对其研究产生浓厚兴趣。研究孤立子理论中的一个重要问题,就是非线性偏微分方程的求解。本文主要讨论了利用达布变换解决偏微分方程的精确解问题,达布变换是求解非线性偏微分方程的一个有效方法。它通过寻找一种保持相应的Lax对不变的规范变换,最终找到方程解之间关系的变换。本文首先从广义KdV方程的AKNS系统的谱问题出发,经过一系列分类讨论,得到该方程的三类达布变换,并给出证明。然后适当的选取该方程的平凡解,进而求出该方程新的精确解。广义KdV方程在流体力学、等离子体物理、气体动力学领域有重要的实践和理论应用,因此对广义KdV方程的研究具有重大意义。  相似文献   

18.
一类非线性热传导方程的线性化解法   总被引:1,自引:0,他引:1  
提出了用一阶线性常微分方程及其解构造非线性偏微分方程精确解的线性化解法.利用该方法求出(3 1)维和(1 1)维的Kolmogorov-Petrovskii-Piskunov型方程的精确解,其中包括扭状孤立波和代数孤立波解,并把(1 1)维的Kolmogorov-Petrovskii-Piskunov型方程推广到具有任意次非线性项的一般热传导方程,得到了其解.  相似文献   

19.
首先利用一个标准变换将修正的非稳非线性Schroedinger方程化成一个非线性偏微分方程组,接着通过选取不同参数得到一些非线性代数方程和非线性常微分方程。然后通过直接方法和假设方法的结合求得约化得到的非线性常微分方程的精确解,从而得到修正的非稳非线性Schroedinger方程的显式精确解,包括精确平面波解、钟状弧立波解、扭状弧立波解、奇异行波解和三角函数状用周期波解。  相似文献   

20.
孤立子理论的迅速发展,使得众多学者对其研究产生浓厚兴趣.研究孤立子理论中的一个重要问题,就是非线性偏微分方程的求解.本文主要讨论了利用达布变换解决偏微分方程的精确解问题,达布变换是求解非线性偏微分方程的一个有效方法.它通过寻找一种保持相应的Lax对不变的规范变换,最终找到方程解之间关系的变换.本文首先从广义KdV方程的AKNS系统的谱问题出发,经过一系列分类讨论,得到该方程的三类达布变换,并给出证明.然后适当的选取该方程的平凡解,进而求出该方程新的精确解.广义KdV方程在流体力学、等离子体物理、气体动力学领域有重要的实践和理论应用,因此对广义KdV方程的研究具有重大意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号